Identification of breast cancer prognosis markers via integrative analysis

被引:7
作者
Ma, Shuangge [1 ]
Dai, Ying [1 ]
Huang, Jian [2 ]
Xie, Yang [3 ]
机构
[1] Yale Univ, Sch Publ Hlth, New Haven, CT 06520 USA
[2] Univ Iowa, Dept Stat & Actuarial Sci & Biostat, Iowa City, IA 52242 USA
[3] UT SW Med Ctr, Dept Clin Sci, Dallas, TX USA
基金
美国国家科学基金会;
关键词
Breast cancer prognosis; Gene expression; Marker identification; Integrative analysis; 2-norm group bridge; DIMENSIONAL LINEAR-REGRESSION; FAILURE TIME MODEL; MICROARRAY DATA; VARIABLE SELECTION; HISTOLOGIC GRADE; EXPRESSION; SURVIVAL; LASSO; SIGNATURE; PROFILES;
D O I
10.1016/j.csda.2012.02.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In breast cancer research, it is of great interest to identify genomic markers associated with prognosis. Multiple gene profiling studies have been conducted for such a purpose. Genomic markers identified from the analysis of single datasets often do not have satisfactory reproducibility. Among the multiple possible reasons, the most important one is the small sample sizes of individual studies. A cost-effective solution is to pool data from multiple comparable studies and conduct integrative analysis. In this study, we collect four breast cancer prognosis studies with gene expression measurements. We describe the relationship between prognosis and gene expressions using the accelerated failure time (AFT) models. We adopt a 2-norm group bridge penalization approach for marker identification. This integrative analysis approach can effectively identify markers with consistent effects across multiple datasets and naturally accommodate the heterogeneity among studies. Statistical and simulation studies demonstrate satisfactory performance of this approach. Breast cancer prognosis markers identified using this approach have sound biological implications and satisfactory prediction performance. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2718 / 2728
页数:11
相关论文
共 34 条
[21]   Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers [J].
Rhodes, DR ;
Chinnaiyan, AM .
APPLICATIONS OF BIOINFORMATICS IN CANCER DETECTION, 2004, 1020 :32-40
[22]   Flexible boosting of accelerated failure time models [J].
Schmid, Matthias ;
Hothorn, Torsten .
BMC BIOINFORMATICS, 2008, 9 (1)
[23]   Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data [J].
Shen, RL ;
Ghosh, D ;
Chinnaiyan, AM .
BMC GENOMICS, 2004, 5 (1)
[24]   Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications [J].
Sorlie, T ;
Perou, CM ;
Tibshirani, R ;
Aas, T ;
Geisler, S ;
Johnsen, H ;
Hastie, T ;
Eisen, MB ;
van de Rijn, M ;
Jeffrey, SS ;
Thorsen, T ;
Quist, H ;
Matese, JC ;
Brown, PO ;
Botstein, D ;
Lonning, PE ;
Borresen-Dale, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10869-10874
[25]   Breast cancer classification and prognosis based on gene expression profiles from a population-based study [J].
Sotiriou, C ;
Neo, SY ;
McShane, LM ;
Korn, EL ;
Long, PM ;
Jazaeri, A ;
Martiat, P ;
Fox, SB ;
Harris, AL ;
Liu, ET .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10393-10398
[26]   Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis [J].
Sotiriou, C ;
Wirapati, P ;
Loi, S ;
Harris, A ;
Fox, S ;
Smeds, J ;
Nordgren, H ;
Farmer, P ;
Praz, V ;
Haibe-Kains, B ;
Desmedt, C ;
Larsimont, D ;
Cardoso, F ;
Peterse, H ;
Nuyten, D ;
Buyse, M ;
Van de Vijver, MJ ;
Bergh, J ;
Piccart, MT ;
Delorenzi, M .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2006, 98 (04) :262-272
[27]   CONSISTENT ESTIMATION UNDER RANDOM CENSORSHIP WHEN COVARIABLES ARE PRESENT [J].
STUTE, W .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (01) :89-103
[28]   The Ras target AF-6 is a substrate of the Fam deubiquitinating enzyme [J].
Taya, S ;
Yamamoto, T ;
Kano, K ;
Kawano, Y ;
Iwamatsu, A ;
Tsuchiya, T ;
Tanaka, K ;
Kanai-Azuma, M ;
Wood, SA ;
Mattick, JS ;
Kaibuchi, K .
JOURNAL OF CELL BIOLOGY, 1998, 142 (04) :1053-1062
[29]   A gene-expression signature as a predictor of survival in breast cancer. [J].
van de Vijver, MJ ;
He, YD ;
van 't Veer, LJ ;
Dai, H ;
Hart, AAM ;
Voskuil, DW ;
Schreiber, GJ ;
Peterse, JL ;
Roberts, C ;
Marton, MJ ;
Parrish, M ;
Atsma, D ;
Witteveen, A ;
Glas, A ;
Delahaye, L ;
van der Velde, T ;
Bartelink, H ;
Rodenhuis, S ;
Rutgers, ET ;
Friend, SH ;
Bernards, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (25) :1999-2009
[30]   Gene expression profiling predicts clinical outcome of breast cancer [J].
van't Veer, LJ ;
Dai, HY ;
van de Vijver, MJ ;
He, YDD ;
Hart, AAM ;
Mao, M ;
Peterse, HL ;
van der Kooy, K ;
Marton, MJ ;
Witteveen, AT ;
Schreiber, GJ ;
Kerkhoven, RM ;
Roberts, C ;
Linsley, PS ;
Bernards, R ;
Friend, SH .
NATURE, 2002, 415 (6871) :530-536