CONSISTENT ESTIMATION UNDER RANDOM CENSORSHIP WHEN COVARIABLES ARE PRESENT

被引:187
作者
STUTE, W [1 ]
机构
[1] MSRI,BERKELEY,CA
关键词
RANDOM CENSORSHIP; COVARIABLES; CONSISTENCY;
D O I
10.1006/jmva.1993.1028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that (Xi, Yi), 1 ≤ i ≤ n, are independent (p + 1)-variate vectors, where each Yi is at risk of being censored from the right and Xi is a vector of observable covariables. We introduce a (p + 1)-dimensional extension of the Kaplan-Meier estimator and show its consistency. Also a general strong law for Kaplan-Meier integrals is proved, which, e.g., may be utilized to prove consistency of a new regression parameter estimator under random censorship. © 1993 Academic Press Inc.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 30 条
[1]   CLASS OF NONPARAMETRIC-TESTS FOR INDEPENDENCE IN BIVARIATE POPULATIONS [J].
BHUCHONGKUL, S .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :138-&
[2]  
BUCKLEY J, 1979, BIOMETRIKA, V66, P429
[3]  
BURKE MD, 1988, STATIST DECISIONS, V6, P89
[4]   RANK-TESTS INDEPENDENCE FOR DIVARIATE CENSORED-DATA [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1986, 14 (01) :250-264
[5]   KAPLAN-MEIER ESTIMATE ON THE PLANE [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1988, 16 (04) :1475-1489
[6]   A TEST OF INDEPENDENCE FOR THE COORDINATES OF BIVARIATE CENSORED-DATA [J].
GOMBAY, E .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (02) :223-240
[8]   CONSISTENCY RESULTS FOR LINEAR-REGRESSION WITH CENSORED-DATA [J].
JAMES, IR ;
SMITH, PJ .
ANNALS OF STATISTICS, 1984, 12 (02) :590-600
[9]  
KALBFLEISCH J, 1981, STATISTICAL ANAL FAI
[10]  
KOUL HL, 1982, SURVIAL ANAL, P86