Accurate sampling using Langevin dynamics

被引:306
作者
Bussi, Giovanni [1 ]
Parrinello, Michele [1 ]
机构
[1] ETH, Dept Chem & Appl Biosci, CH-6900 Lugano, Switzerland
关键词
D O I
10.1103/PhysRevE.75.056707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in a recent paper [J. Chem. Phys. 126, 014101 (2007)]. Our integrator leads to correct sampling also in the difficult high-friction limit. We also show how these ideas can be applied in practical simulations, using a Lennard-Jones crystal as a paradigmatic case.
引用
收藏
页数:7
相关论文
共 35 条
[31]   BROWNIAN DYNAMICS - ITS APPLICATION TO IONIC-SOLUTIONS [J].
TURQ, P ;
LANTELME, F ;
FRIEDMAN, HL .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (07) :3039-3044
[32]   Second-order integrators for Langevin equations with holonomic constraints [J].
Vanden-Eijnden, Eric ;
Ciccotti, Giovanni .
CHEMICAL PHYSICS LETTERS, 2006, 429 (1-3) :310-316
[33]   ALGORITHMS FOR BROWNIAN DYNAMICS [J].
VANGUNSTEREN, WF ;
BERENDSEN, HJC .
MOLECULAR PHYSICS, 1982, 45 (03) :637-647
[34]   Dynamic weighting in Monte Carlo and optimization [J].
Wong, WH ;
Liang, FM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14220-14224
[35]   MEMORY EFFECTS IN IRREVERSIBLE THERMODYNAMICS [J].
ZWANZIG, R .
PHYSICAL REVIEW, 1961, 124 (04) :983-&