Second-order integrators for Langevin equations with holonomic constraints

被引:154
作者
Vanden-Eijnden, Eric
Ciccotti, Giovanni
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.cplett.2006.07.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a numerical scheme for the integration of the Langevin equation which is second-order accurate. More importantly, we indicate how to generalize this scheme to situations where holonomic constraints are added and show that the resulting scheme remains second-order accurate. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 9 条
[1]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500
[2]  
Kloeden P. E., 1992, NUMERICAL SOLUTIONS
[3]  
Milstein G., 1995, Numerical Integration of Stochastic Differential Equations, Mathematics and its Application
[4]   Quasi-symplectic methods for Langevin-type equations [J].
Milstein, GN ;
Tretyakov, MV .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :593-626
[5]   Algorithms for Brownian dynamics [J].
Ricci, A ;
Ciccotti, G .
MOLECULAR PHYSICS, 2003, 101 (12) :1927-1931
[6]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[7]   An impulse integrator for Langevin dynamics [J].
Skeel, RD ;
Izaguirre, JA .
MOLECULAR PHYSICS, 2002, 100 (24) :3885-3891
[8]   ALGORITHMS FOR BROWNIAN DYNAMICS [J].
VANGUNSTEREN, WF ;
BERENDSEN, HJC .
MOLECULAR PHYSICS, 1982, 45 (03) :637-647
[9]   Analysis of a few numerical integration methods for the Langevin equation [J].
Wang, W ;
Skeel, RD .
MOLECULAR PHYSICS, 2003, 101 (14) :2149-2156