Efficient estimation of models with conditional moment restrictions containing unknown functions

被引:352
作者
Ai, CR [1 ]
Chen, XH
机构
[1] Univ Florida, Dept Econ, Gainesville, FL 32611 USA
[2] NYU, Dept Econ, New York, NY 10003 USA
关键词
semi-/nonparametric conditional moment restrictions; sieve minimum distance; continuous updating; endogeneity; semiparametric efficiency;
D O I
10.1111/1468-0262.00470
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (theta) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate theta and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n(-1/4) under certain metric; (ii) the estimator of theta is rootn consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the theta estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of 0 attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.
引用
收藏
页码:1795 / 1843
页数:49
相关论文
共 38 条
[1]   A semiparametric maximum likelihood estimator [J].
Ai, CR .
ECONOMETRICA, 1997, 65 (04) :933-963
[2]   ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC-MODELS VIA STOCHASTIC EQUICONTINUITY [J].
ANDREWS, DWK .
ECONOMETRICA, 1994, 62 (01) :43-72
[3]   EFFICIENCY BOUNDS FOR SEMIPARAMETRIC REGRESSION [J].
CHAMBERLAIN, G .
ECONOMETRICA, 1992, 60 (03) :567-596
[4]   ASYMPTOTIC EFFICIENCY IN ESTIMATION WITH CONDITIONAL MOMENT RESTRICTIONS [J].
CHAMBERLAIN, G .
JOURNAL OF ECONOMETRICS, 1987, 34 (03) :305-334
[5]   A method and technique for observing the stereo pseudocolor image of phase change of objects [J].
Chen, GY ;
Duan, WS .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (04) :1583-1588
[6]  
CHEN X, 1997, UNPUB SHAPE PRESERVI
[7]   Sieve extremum estimates for weakly dependent data [J].
Chen, XH ;
Shen, XT .
ECONOMETRICA, 1998, 66 (02) :289-314
[8]   Improved rates and asymptotic normality for nonparametric neural network estimators [J].
Chen, XH ;
White, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :682-691
[9]  
Chui C. K., 1992, An introduction to wavelets, V1
[10]   Convergence rates of SNP density estimators [J].
Fenton, VM ;
Gallant, AR .
ECONOMETRICA, 1996, 64 (03) :719-727