ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC-MODELS VIA STOCHASTIC EQUICONTINUITY

被引:150
作者
ANDREWS, DWK
机构
关键词
ASYMPTOTIC NORMALITY; EMPIRICAL PROCESS; INFINITE DIMENSIONAL NUISANCE PARAMETER; NONPARAMETRIC ESTIMATION; SEMIPARAMETRIC ESTIMATION; SEMIPARAMETRIC MODEL; STOCHASTIC EQUICONTINUITY; WEAK CONVERGENCE;
D O I
10.2307/2951475
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides a general framework for proving the root T-consistency and asymptotic normality of a wide variety of semiparametric estimators. The class of estimators considered consists of estimators that can be defined as the solution to a minimization problem based on a criterion function that may depend on a preliminary infinite dimensional nuisance parameter estimator. The method of proof exploits results concerning the stochastic equicontinuity of stochastic processes. The results are applied to the problem of semiparametric weighted least squares estimation of partially parametric regression models. Primitive conditions are given for root T-consistency and asymptotic normality of this estimator.
引用
收藏
页码:43 / 72
页数:30
相关论文
共 54 条
[1]  
ANDREW DWK, 1989, 908R YAL U COWL F DI
[2]   LAWS OF LARGE NUMBERS FOR DEPENDENT NON-IDENTICALLY DISTRIBUTED RANDOM-VARIABLES [J].
ANDREWS, DWK .
ECONOMETRIC THEORY, 1988, 4 (03) :458-467
[3]   GENERIC UNIFORM-CONVERGENCE [J].
ANDREWS, DWK .
ECONOMETRIC THEORY, 1992, 8 (02) :241-257
[4]   AN IMPROVED HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATOR [J].
ANDREWS, DWK ;
MONAHAN, JC .
ECONOMETRICA, 1992, 60 (04) :953-966
[5]   TESTS FOR PARAMETER INSTABILITY AND STRUCTURAL-CHANGE WITH UNKNOWN CHANGE-POINT [J].
ANDREWS, DWK .
ECONOMETRICA, 1993, 61 (04) :821-856
[7]   CONSISTENCY IN NONLINEAR ECONOMETRIC-MODELS - A GENERIC UNIFORM LAW OF LARGE NUMBERS [J].
ANDREWS, DWK .
ECONOMETRICA, 1987, 55 (06) :1465-1471
[8]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[9]  
ANDREWS DWK, 1994, HDB ECONOMETRICS, V4, pCH2
[10]  
ANDREWS DWK, 1989, UNPUB STOCHASTIC EQU