Sieve extremum estimates for weakly dependent data

被引:146
作者
Chen, XH
Shen, XT
机构
[1] Univ Chicago, Dept Econ, Chicago, IL 60637 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
关键词
sieve extremum estimates; beta-mixing; rate and normality; neural networks; wavelets; shape-preserving splines;
D O I
10.2307/2998559
中图分类号
F [经济];
学科分类号
02 ;
摘要
Many non/semi-parametric time series estimates may be regarded as different forms of sieve extremum estimates. For stationary beta-mixing observations, we obtain convergence rates of sieve extremum estimates and root-n asymptotic normality of "plug-in" sieve extremum estimates of smooth functionals. As applications to time series models, we give convergence rates for nonparametric ARX(p, q) regression via neural networks, splines, and wavelets; root-n asymptotic normality for partial linear additive AR(p) models, and monotone transformation AR(1) models.
引用
收藏
页码:289 / 314
页数:26
相关论文
共 43 条
[1]  
8Doukhan P., 2012, Mixing: Properties and Examples, V85
[2]  
Amemiya Takeshi., 1985, Advanced Econometrics
[3]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[4]   ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC-MODELS VIA STOCHASTIC EQUICONTINUITY [J].
ANDREWS, DWK .
ECONOMETRICA, 1994, 62 (01) :43-72
[5]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[6]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[7]  
BARRON AR, 1994, MACH LEARN, V14, P115, DOI 10.1007/BF00993164
[8]   RATES OF CONVERGENCE FOR MINIMUM CONTRAST ESTIMATORS [J].
BIRGE, L ;
MASSART, P .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (1-2) :113-150
[9]  
BIRGE L, 1994, MINIMUM CONTRAST EST
[10]  
CHEN XH, 1996, ASYMPTOTIC PROPERTIE