Generalized least-squares estimators for the thickness of heavy tails

被引:18
作者
Aban, IB [1 ]
Meerschaert, MM [1 ]
机构
[1] Univ Nevada, Dept Math, Coll Arts & Sci, Reno, NV 89557 USA
关键词
least-squares; linear regression; heavy tails; order statistics;
D O I
10.1016/S0378-3758(02)00419-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a probability distribution with Power law tails, a log-log transformation makes the tails of the empirical distribution function resemble a straight line, leading to a least-squares estimate of the tail thickness. Taking into account the mean and covariance structure of the extreme order statistics leads to improved tail estimators, and a surprising connection with Hill's estimator. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 25 条
[21]  
Mandelbrot BB., 1977, FRACTAL GEOMETRY NAT
[23]   A simple robust estimation method for the thickness of heavy tails [J].
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 71 (1-2) :19-34
[24]   Smoothing the Hill estimator [J].
Resnick, S ;
Starica, C .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :271-293
[25]  
Schultze J., 1996, Statist. Decisions, V14, P353