A simple robust estimation method for the thickness of heavy tails

被引:45
作者
Meerschaert, MM
Scheffler, HP
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[2] Univ Nevada, Dept Math, Reno, NV 89557 USA
关键词
parameter estimation; heavy tails; regular variation; domains of attraction;
D O I
10.1016/S0378-3758(98)00093-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a simple general method for estimating the thickness of heavy tails based on the asymptotics of the sum. The method works for dependent data, and only requires that the centered and normalized partial sums are stochastically compact. For data in the domain of attraction of a stable law our estimator is asymptotically log stable, consistent and asymptotically unbiased, and converges in the mean-square sense to the index of regular variation. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 34 条
[1]  
Anderson PL, 1997, ANN STAT, V25, P771
[2]  
Bingham N. H., 1989, Encyclopedia of Mathematics and Its Applications, V27
[3]  
Brockwell P.J., 1991, TIME SERIES THEORY M
[4]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[5]   LIMIT THEORY FOR MOVING AVERAGES OF RANDOM-VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF PROBABILITY, 1985, 13 (01) :179-195
[6]   ON THE ESTIMATION OF THE EXTREME-VALUE INDEX AND LARGE QUANTILE ESTIMATION [J].
DEKKERS, ALM ;
DEHAAN, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1795-1832
[7]  
Drees H, 1995, ANN STAT, V23, P2059
[8]  
Falk M, 1995, ANN STAT, V23, P2013
[9]  
FELLER W, 1971, INTRO PROGABILITY TH, V2
[10]  
HALL P, 1982, J ROY STAT SOC B MET, V44, P37