Generalized least-squares estimators for the thickness of heavy tails

被引:18
作者
Aban, IB [1 ]
Meerschaert, MM [1 ]
机构
[1] Univ Nevada, Dept Math, Coll Arts & Sci, Reno, NV 89557 USA
关键词
least-squares; linear regression; heavy tails; order statistics;
D O I
10.1016/S0378-3758(02)00419-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a probability distribution with Power law tails, a log-log transformation makes the tails of the empirical distribution function resemble a straight line, leading to a least-squares estimate of the tail thickness. Taking into account the mean and covariance structure of the extreme order statistics leads to improved tail estimators, and a surprising connection with Hill's estimator. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 25 条
[1]   Shifted Hill's estimator for heavy tails [J].
Aban, IB ;
Meerschaert, MM .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2001, 30 (04) :949-962
[2]  
[Anonymous], 1999, PROBABILITY MATH STA
[3]  
[Anonymous], 1984, Multivariate Analysis
[4]  
Barlow R., 1981, STAT THEORY RELIABIL
[5]  
BEIRLANT J, 1989, LECT NOTES STAT, V51, P148
[6]  
Beirlant J., 1999, EXTREMES, V2, P177, DOI DOI 10.1023/A:1009975020370
[7]  
Bickel P., 1977, Mathematical Statistics
[8]   CENTRAL LIMIT-THEOREMS FOR SUMS OF EXTREME VALUES [J].
CSORGO, S ;
MASON, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (NOV) :547-558
[9]   Asymptotic normality of least-squares estimators of tail indices [J].
Csorgo, S ;
Viharos, L .
BERNOULLI, 1997, 3 (03) :351-370
[10]   Estimating the tail index [J].
Csörgö, S ;
Viharos, L .
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, :833-881