Asymptotic normality of least-squares estimators of tail indices

被引:22
作者
Csorgo, S
Viharos, L
机构
[1] UNIV SZEGED,BOLYAI INST,H-6720 SZEGED,HUNGARY
[2] UNIV MICHIGAN,DEPT STAT,ANN ARBOR,MI 48109
基金
美国国家科学基金会; 匈牙利科学研究基金会;
关键词
asymptotic confidence intervals; asymptotic mean square errors; least-squares estimators; tail index; universal asymptotic normality;
D O I
10.2307/3318597
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Based on least-squares considerations, Schultze and Steinebach proposed three new estimators for the tail index of a regularly varying distribution function and proved their consistency. We show that, unlike the Hill estimator, all three least-squares estimators can be centred to have normal asymptotic distributions universally over the whole model, and for two of these estimators this in fact happens at the desirable order of the norming sequence. We analyse the conditions under which asymptotic confidence intervals become possible. In a submodel, we compare the asymptotic mean square errors of optimal versions of these and earlier estimators. The choice of the number of extreme order statistics to be used is also discussed through the investigation of the asymptotic mean square error for a comprehensive set of examples of a general kind.
引用
收藏
页码:351 / 370
页数:20
相关论文
共 22 条
[1]  
BEIRLANT J, 1989, LECT NOTES STAT, V51, P148
[2]  
Bingham N., 1989, REGULAR VARIATION
[3]   WEIGHTED EMPIRICAL AND QUANTILE PROCESSES [J].
CSORGO, M ;
CSORGO, S ;
HORVATH, L ;
MASON, DM .
ANNALS OF PROBABILITY, 1986, 14 (01) :31-85
[4]   ON THE ASYMPTOTIC NORMALITY OF HILLS ESTIMATOR [J].
CSORGO, S ;
VIHAROS, L .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 :375-382
[5]   THE ASYMPTOTIC-DISTRIBUTION OF EXTREME SUMS [J].
CSORGO, S ;
HAEUSLER, E ;
MASON, DM .
ANNALS OF PROBABILITY, 1991, 19 (02) :783-811
[6]   CENTRAL LIMIT-THEOREMS FOR SUMS OF EXTREME VALUES [J].
CSORGO, S ;
MASON, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (NOV) :547-558
[7]   KERNEL ESTIMATES OF THE TAIL INDEX OF A DISTRIBUTION [J].
CSORGO, S ;
DEHEUVELS, P ;
MASON, D .
ANNALS OF STATISTICS, 1985, 13 (03) :1050-1077
[8]  
CSORGO S, 1984, C MATH SOC J BOLYAI, V36, P305
[9]  
de Haan L., 1970, MATH CTR TRACTS, V32
[10]   ALMOST SURE CONVERGENCE OF THE HILL ESTIMATOR [J].
DEHEUVELS, P ;
HAEUSLER, E ;
MASON, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :371-381