Toward high-resolution prediction and design of transmembrane helical protein structures

被引:181
作者
Barth, P.
Schonbrun, J.
Baker, D. [1 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
membrane protein; force field; helical distortion; ROSETTA;
D O I
10.1073/pnas.0702515104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The prediction and design at the atomic level of membrane protein structures and interactions is a critical but unsolved challenge. To address this problem, we have developed an all-atom physical model that describes intraprotein and protein-solvent interactions in the membrane environment. We evaluated the ability of the model to recapitulate the energetics and structural specificities of polytopic membrane proteins by using a battery of in silico prediction and design tests. First, in side-chain packing and design tests, the model successfully predicts the side-chain conformations at 73% of nonexposed positions and the native amino acid identities at 34% of positions in naturally occurring membrane proteins. Second, the model predicts significant energy gaps between native and normative structures of transmembrane helical interfaces and polytopic membrane proteins. Third, distortions in transmembrane helices are successfully recapitulated in docking experiments by using fragments of ideal helices judiciously defined around helical kinks. Finally, de novo structure prediction reaches near-atomic accuracy (<2.5 angstrom) for several small membrane protein domains (< 150 residues). The success of the model highlights the critical role of van der Waals and hydrogen-bonding interactions in the stability and structural specificity of membrane protein structures and sets the stage for the high-resolution prediction and design of complex membrane protein architectures.
引用
收藏
页码:15682 / 15687
页数:6
相关论文
共 29 条
[21]   Progress on modeling of protein structures and interactions [J].
Schueler-Furman, O ;
Wang, C ;
Bradley, P ;
Misura, K ;
Baker, D .
SCIENCE, 2005, 310 (5748) :638-642
[22]   PREDICT modeling and in-silico screening for G-protein coupled receptors [J].
Shacham, S ;
Marantz, Y ;
Bar-Haim, S ;
Kalid, O ;
Warshaviak, D ;
Avisar, N ;
Inbal, B ;
Heifetz, A ;
Fichman, M ;
Topf, M ;
Naor, Z ;
Noiman, S ;
Becker, OM .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 57 (01) :51-86
[23]   First principles predictions of the structure and function of G-protein-coupled receptors: Validation for bovine rhodopsin [J].
Trabanino, RJ ;
Hall, SE ;
Vaidehi, N ;
Floriano, WB ;
Kam, VWT ;
Goddard, WA .
BIOPHYSICAL JOURNAL, 2004, 86 (04) :1904-1921
[24]   Prediction of structure and function of G protein-coupled receptors [J].
Vaidehi, N ;
Floriano, WB ;
Trabanino, R ;
Hall, SE ;
Freddolino, P ;
Choi, EJ ;
Zamanakos, G ;
Goddard, WA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12622-12627
[25]   Thyrotropin-releasing hormone stimulates phosphorylation of the epidermal growth factor receptor in GH3 pituitary cells [J].
Wang, YH ;
Jue, SF ;
Maurer, RA .
MOLECULAR ENDOCRINOLOGY, 2000, 14 (09) :1328-1337
[26]   Multipass membrane protein structure prediction using Rosetta [J].
Yarov-Yarovoy, V ;
Schonbrun, J ;
Baker, D .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (04) :1010-1025
[27]   Computational design of peptides that target transmembrane helices [J].
Yin, Hang ;
Slusky, Joanna S. ;
Berger, Bryan W. ;
Walters, Robin S. ;
Vilaire, Gaston ;
Litvinov, Rustem I. ;
Lear, James D. ;
Caputo, Gregory A. ;
Bennett, Joel S. ;
DeGrado, William F. .
SCIENCE, 2007, 315 (5820) :1817-1822
[28]   The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors [J].
Yohannan, S ;
Faham, S ;
Yang, D ;
Whitelegge, JP ;
Bowie, JU .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (04) :959-963
[29]   Structure modeling of all identified G protein-coupled receptors in the human genome [J].
Zhang, Yang ;
DeVries, Mark E. ;
Skolnick, Jeffrey .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (02) :88-99