A DOUBLE LOGISTIC MAP

被引:58
作者
GARDINI, L
ABRAHAM, R
RECORD, RJ
FOURNIERPRUNARET, D
机构
[1] UNIV CALIF SANTA CRUZ,DEPT MATH,SANTA CRUZ,CA 95064
[2] GESNLA,INST NATL SCI APPL,F-31077 TOULOUSE,FRANCE
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 01期
关键词
D O I
10.1142/S0218127494000125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several endomorphisms of a plane have been constructed by coupling two logistic maps. Here we study the dynamics occurring in one of them, a twisted version due to J. Dorband, which (like the other models) is rich in global bifurcations. By use of critical curves, absorbing and invariant areas are determined, inside which global bifurcations of the attracting sets (fixed points, closed invariant curves, cycles or chaotic attractors) take place. The basins of attraction of the absorbing areas are determined together with their bifurcations.
引用
收藏
页码:145 / 176
页数:32
相关论文
共 39 条
[11]  
GARDINI L, 1992, IN PRESS NONLINEAR A
[12]  
GARDINI L, 1991, EUROPEAN C ITERATION
[13]  
GARDINI L, 1992, IN PRESS SEP P EUR C
[14]  
GARDINI L, 1992, INT J BIFURCATION CH, V3, P921
[15]   FRACTAL BASIN BOUNDARIES, LONG-LIVED CHAOTIC TRANSIENTS, AND UNSTABLE-UNSTABLE PAIR BIFURCATION [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 50 (13) :935-938
[16]  
GUMOWSKI I, 1975, CR ACAD SCI A MATH, V280, P905
[17]  
GUMOWSKI I, 1978, CR ACAD SCI A MATH, V286, P427
[18]  
GUMOWSKI I, 1975, CR ACAD SCI A MATH, V281, P45
[19]  
GUMOWSKI I, 1975, CR ACAD SCI PARIS A, V282, P219
[20]  
GUMOWSKI I, 1977, CR ACAD SCI PARIS A, V285, P447