Integrative analysis of '-omics' data using penalty functions

被引:39
作者
Zhao, Qing [1 ]
Shi, Xingjie [1 ,2 ]
Huang, Jian [3 ]
Liu, Jin [4 ]
Li, Yang [5 ]
Ma, Shuangge [1 ,6 ]
机构
[1] Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT 06520 USA
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[3] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[4] UIC Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL USA
[5] Renmin Univ, Sch Stat, Ctr Appl Stat, Beijing, Peoples R China
[6] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
关键词
integrative analysis; omics data; marker selection; penalization;
D O I
10.1002/wics.1322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond 'standard' penalized selection, we also review contrasted penalization and Laplacian penalization that accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 53 条
[41]   A coordinate gradient descent method for nonsmooth separable minimization [J].
Tseng, Paul ;
Yun, Sangwoon .
MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) :387-423
[42]  
van de Geer S, 2013, ASYMPTOTICALLY OPTIM
[43]  
Voorman A, 2014, INFERENCE HIGH DIMEN
[44]   iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets [J].
Wei, Yingying ;
Li, Xia ;
Wang, Qian-fei ;
Ji, Hongkai .
BMC GENOMICS, 2012, 13
[45]   COORDINATE DESCENT ALGORITHMS FOR LASSO PENALIZED REGRESSION [J].
Wu, Tong Tong ;
Lange, Kenneth .
ANNALS OF APPLIED STATISTICS, 2008, 2 (01) :224-244
[46]   Model selection and estimation in regression with grouped variables [J].
Yuan, M ;
Lin, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :49-67
[47]   Dimension reduction and coefficient estimation in multivariate linear regression [J].
Yuan, Ming ;
Ekici, Ali ;
Lu, Zhaosong ;
Monteiro, Renato .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :329-346
[48]   A general framework for weighted gene co-expression network analysis [J].
Zhang, Bin ;
Horvath, Steve .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2005, 4 :i-43
[49]   Confidence intervals for low dimensional parameters in high dimensional linear models [J].
Zhang, Cun-Hui ;
Zhang, Stephanie S. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (01) :217-242
[50]   NEARLY UNBIASED VARIABLE SELECTION UNDER MINIMAX CONCAVE PENALTY [J].
Zhang, Cun-Hui .
ANNALS OF STATISTICS, 2010, 38 (02) :894-942