Integrative analysis of '-omics' data using penalty functions

被引:39
作者
Zhao, Qing [1 ]
Shi, Xingjie [1 ,2 ]
Huang, Jian [3 ]
Liu, Jin [4 ]
Li, Yang [5 ]
Ma, Shuangge [1 ,6 ]
机构
[1] Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT 06520 USA
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[3] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[4] UIC Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL USA
[5] Renmin Univ, Sch Stat, Ctr Appl Stat, Beijing, Peoples R China
[6] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
关键词
integrative analysis; omics data; marker selection; penalization;
D O I
10.1002/wics.1322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond 'standard' penalized selection, we also review contrasted penalization and Laplacian penalization that accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 53 条
[1]   VALID POST-SELECTION INFERENCE [J].
Berk, Richard ;
Brown, Lawrence ;
Buja, Andreas ;
Zhang, Kai ;
Zhao, Linda .
ANNALS OF STATISTICS, 2013, 41 (02) :802-837
[2]   COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION [J].
Breheny, Patrick ;
Huang, Jian .
ANNALS OF APPLIED STATISTICS, 2011, 5 (01) :232-253
[3]  
Breheny P, 2009, STAT INTERFACE, V2, P369
[4]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[5]   Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data [J].
Costa, Ivan G. ;
Krause, Roland ;
Opitz, Lennart ;
Schliep, Alexander .
BMC BIOINFORMATICS, 2007, 8 (Suppl 10)
[6]   Meta-analysis methods for genome-wide association studies and beyond [J].
Evangelou, Evangelos ;
Ioannidis, John P. A. .
NATURE REVIEWS GENETICS, 2013, 14 (06) :379-389
[7]  
Fan J., 2013, CHALLENGES BIG DATA
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]  
Feng Y, 2013, CONSISTENT CROSS VAL
[10]   Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci [J].
Franke, Andre ;
McGovern, Dermot P. B. ;
Barrett, Jeffrey C. ;
Wang, Kai ;
Radford-Smith, Graham L. ;
Ahmad, Tariq ;
Lees, Charlie W. ;
Balschun, Tobias ;
Lee, James ;
Roberts, Rebecca ;
Anderson, Carl A. ;
Bis, Joshua C. ;
Bumpstead, Suzanne ;
Ellinghaus, David ;
Festen, Eleonora M. ;
Georges, Michel ;
Green, Todd ;
Haritunians, Talin ;
Jostins, Luke ;
Latiano, Anna ;
Mathew, Christopher G. ;
Montgomery, Grant W. ;
Prescott, Natalie J. ;
Raychaudhuri, Soumya ;
Rotter, Jerome I. ;
Schumm, Philip ;
Sharma, Yashoda ;
Simms, Lisa A. ;
Taylor, Kent D. ;
Whiteman, David ;
Wijmenga, Cisca ;
Baldassano, Robert N. ;
Barclay, Murray ;
Bayless, Theodore M. ;
Brand, Stephan ;
Buening, Carsten ;
Cohen, Albert ;
Colombel, Jean-Frederick ;
Cottone, Mario ;
Stronati, Laura ;
Denson, Ted ;
De Vos, Martine ;
D'Inca, Renata ;
Dubinsky, Marla ;
Edwards, Cathryn ;
Florin, Tim ;
Franchimont, Denis ;
Gearry, Richard ;
Glas, Juergen ;
Van Gossum, Andre .
NATURE GENETICS, 2010, 42 (12) :1118-+