MODELS OF INTERMITTENCY IN HYDRODYNAMIC TURBULENCE

被引:133
作者
KRAICHNAN, RH
机构
[1] Los Alamos, NM 87544
关键词
D O I
10.1103/PhysRevLett.65.575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A heurisitic model for evolution of the probability distribution (PDF) of transverse velocity gradient s in incompressible Navier-Stokes turbulence is distilled from an analytical closure for Burgers turbulence. At all Reynolds number scrR, the evolved PDF is s-1/2 exp(-const×ss21/2) for large. The model suggests that skewness and flatnesses are asymptotically independent of scrR, and that cascade to smaller scales is not a fractal process. For Burgers dynamics, both simulations and the analytical closure give a PDF -1 exp(-const×21/2) for large negative velocity gradient. © 1990 The American Physical Society.
引用
收藏
页码:575 / 578
页数:4
相关论文
共 20 条
[11]   LAGRANGIAN-HISTORY STATISTICAL THEORY FOR BURGERS EQUATION [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1968, 11 (02) :265-+
[12]   KOLMOGOROVS INERTIAL-RANGE THEORIES [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :305-330
[13]  
LANDAU LD, 1959, FLUID MECHANICS, P126
[14]  
MONIN AS, 1971, STATISTICAL FLUID ME
[15]   A CLOSURE THEORY OF INTERMITTENCY OF TURBULENCE [J].
QIAN, J .
PHYSICS OF FLUIDS, 1986, 29 (07) :2165-2171
[16]   INTERMITTENT VORTEX STRUCTURES IN HOMOGENEOUS ISOTROPIC TURBULENCE [J].
SHE, ZS ;
JACKSON, E ;
ORSZAG, SA .
NATURE, 1990, 344 (6263) :226-228
[17]  
SHE ZS, 1988, J SCI COMPUT, V3, P407
[18]   SINGULARITIES OF THE EQUATIONS OF FLUID MOTION [J].
SREENIVASAN, KR ;
MENEVEAU, C .
PHYSICAL REVIEW A, 1988, 38 (12) :6287-6295
[19]   REYNOLDS-NUMBER DEPENDENCE OF SKEWNESS AND FLATNESS FACTORS OF TURBULENT VELOCITY DERIVATIVES [J].
VANATTA, CW ;
ANTONIA, RA .
PHYSICS OF FLUIDS, 1980, 23 (02) :252-257
[20]  
VINCENT A, IN PRESS