NON-LINEAR PROGRAMMING VIA AN EXACT PENALTY-FUNCTION - GLOBAL ANALYSIS

被引:41
作者
COLEMAN, TF
CONN, AR
机构
[1] ARGONNE NATL LAB,DIV APPL MATH,ARGONNE,IL 60439
[2] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
EXACT PENALTY METHODS - SUCCESSIVE QUADRATIC PROGRAMMING;
D O I
10.1007/BF01585101
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An algorithm to solve the nonlinear programming problem is notivated and described. The method is based on an exact penalty function and possesess both global and superlinear convergence properties. The global qualities are established. The numerical implementation technqiues are briefly discussed, and preliminary numerical results are given.
引用
收藏
页码:137 / 161
页数:25
相关论文
共 15 条
[1]  
Asaadi J, 1973, MATH PROGRAM, V4, P144
[2]   MINIMIZATION TECHNIQUES FOR PIECEWISE DIFFERENTIABLE FUNCTIONS - L1 SOLUTION TO AN OVERDETERMINED LINEAR-SYSTEM [J].
BARTELS, RH ;
CONN, AR ;
SINCLAIR, JW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :224-241
[3]  
CHAMBERLAIN RM, 1979, MATH PROGRAM, V16, P378, DOI 10.1007/BF01582123
[4]   LOWER BOUND FOR CONTROLLING PARAMETERS OF EXACT PENALTY FUNCTIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1978, 15 (03) :278-290
[5]   CONDITIONS FOR OPTIMALITY OF THE NON-LINEAR L-1 PROBLEM [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1979, 17 (02) :123-135
[6]   NON-LINEAR PROGRAMMING VIA AN EXACT PENALTY-FUNCTION - ASYMPTOTIC ANALYSIS [J].
COLEMAN, TF ;
CONN, AR .
MATHEMATICAL PROGRAMMING, 1982, 24 (02) :123-136
[7]   2ND-ORDER CONDITIONS FOR AN EXACT PENALTY-FUNCTION [J].
COLEMAN, TF ;
CONN, AR .
MATHEMATICAL PROGRAMMING, 1980, 19 (02) :178-185
[8]  
COLVILLE AR, 1968, IBM3202949 NEW YORK
[9]   PENALTY FUNCTION METHOD CONVERGING DIRECTLY TO A CONSTRAINED OPTIMUM [J].
CONN, AR ;
PIETRZYKOWSKI, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :348-375
[10]  
Gill P. E., 1974, NUMERICAL METHODS CO