NON-LINEAR PROGRAMMING VIA AN EXACT PENALTY-FUNCTION - ASYMPTOTIC ANALYSIS

被引:68
作者
COLEMAN, TF
CONN, AR
机构
[1] ARGONNE NATL LAB,DIV APPL MATH,ARGONNE,IL 60439
[2] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
D O I
10.1007/BF01585100
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:123 / 136
页数:14
相关论文
共 16 条
[1]  
CHAMBERLAIN RM, 1979, MATH PROGRAM, V16, P378, DOI 10.1007/BF01582123
[2]  
CHAMBERLAIN RM, 1979, 10TH INT S MATH PROG
[3]   LOWER BOUND FOR CONTROLLING PARAMETERS OF EXACT PENALTY FUNCTIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1978, 15 (03) :278-290
[4]   CONDITIONS FOR OPTIMALITY OF THE NON-LINEAR L-1 PROBLEM [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1979, 17 (02) :123-135
[5]   2ND-ORDER CONDITIONS FOR AN EXACT PENALTY-FUNCTION [J].
COLEMAN, TF ;
CONN, AR .
MATHEMATICAL PROGRAMMING, 1980, 19 (02) :178-185
[6]   NON-LINEAR PROGRAMMING VIA AN EXACT PENALTY-FUNCTION - GLOBAL ANALYSIS [J].
COLEMAN, TF ;
CONN, AR .
MATHEMATICAL PROGRAMMING, 1982, 24 (02) :137-161
[7]   PENALTY FUNCTION METHOD CONVERGING DIRECTLY TO A CONSTRAINED OPTIMUM [J].
CONN, AR ;
PIETRZYKOWSKI, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :348-375
[8]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[9]  
DIXON LCW, 1979, 10TH INT S MATH PROG
[10]  
Fiacco A., 1990, NONLINEAR PROGRAMMIN