OPTIMAL PATHS AND DOMAIN-WALLS IN THE STRONG DISORDER LIMIT

被引:132
作者
CIEPLAK, M
MARITAN, A
BANAVAR, JR
机构
[1] IST NAZL FIS NUCL,PADUA,ITALY
[2] PENN STATE UNIV,CTR MAT PHYS,UNIV PK,PA 16802
[3] POLISH ACAD SCI,INST PHYS,PL-02668 WARSAW,POLAND
[4] UNIV PADUA,DIPARTIMENTO FIS,I-35100 PADUA,ITALY
关键词
D O I
10.1103/PhysRevLett.72.2320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An optimization problem that may be cast in the context of domain walls in ferromagnets and spin glasses, lattice animals, and percolation is described. Numerical calculations in two and three dimensions show that a new universality class is obtained. In the strong disorder limit interfaces are not self-affine but fractal. Further, the nontrivial ground state of frustrated spin glasses is straightforwardly obtained in this limit.
引用
收藏
页码:2320 / 2324
页数:5
相关论文
共 35 条
[31]  
RINTOUL MD, UNPUB
[32]  
Stauffer D., 1985, INTRO PERCOLATION TH, DOI DOI 10.1201/9781315274386
[33]   SELF-AVOIDING SURFACES, TOPOLOGY, AND LATTICE ANIMALS [J].
STELLA, AL ;
ORLANDINI, E ;
BEICHL, I ;
SULLIVAN, F ;
TESI, MC ;
EINSTEIN, TL .
PHYSICAL REVIEW LETTERS, 1992, 69 (25) :3650-3653
[34]  
STENSKI PN, 1991, PHYS REV LETT, V66, P1330
[35]   FRACTAL DIMENSION OF ROUGH SURFACES IN THE SOLID-ON-SOLID MODEL [J].
WONG, PZ ;
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (09) :1057-1057