Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C-elegans

被引:156
作者
Mitrovich, QM [1 ]
Anderson, P [1 ]
机构
[1] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA
关键词
mRNA surveillance; ribosomal protein autoregulation; regulated alternative splicing;
D O I
10.1101/gad.819900
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(-) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(-) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(-) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation.
引用
收藏
页码:2173 / 2184
页数:12
相关论文
共 50 条
[1]   NAM7 NUCLEAR GENE ENCODES A NOVEL MEMBER OF A FAMILY OF HELICASES WITH A ZN-LIGAND MOTIF AND IS INVOLVED IN MITOCHONDRIAL FUNCTIONS IN SACCHAROMYCES-CEREVISIAE [J].
ALTAMURA, N ;
GROUDINSKY, O ;
DUJARDIN, G ;
SLONIMSKI, PP .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (03) :575-587
[2]   CONSEQUENCES OF FRAMESHIFT MUTATIONS AT THE IMMUNOGLOBULIN HEAVY-CHAIN LOCUS OF THE MOUSE [J].
BAUMANN, B ;
POTASH, MJ ;
KOHLER, G .
EMBO JOURNAL, 1985, 4 (02) :351-359
[3]   FUNCTIONS OF THE MYOSIN ATP AND ACTIN BINDING-SITES ARE REQUIRED FOR C-ELEGANS THICK FILAMENT ASSEMBLY [J].
BEJSOVEC, A ;
ANDERSON, P .
CELL, 1990, 60 (01) :133-140
[4]   A molecular evolutionary framework for the phylum Nematoda [J].
Blaxter, ML ;
De Ley, P ;
Garey, JR ;
Liu, LX ;
Scheldeman, P ;
Vierstraete, A ;
Vanfleteren, JR ;
Mackey, LY ;
Dorris, M ;
Frisse, LM ;
Vida, JT ;
Thomas, WK .
NATURE, 1998, 392 (6671) :71-75
[5]  
BLUMENTHAL T, 1997, C ELEGANS, V2, P117
[6]   Genome sequence of the nematode C-elegans:: A platform for investigating biology [J].
不详 .
SCIENCE, 1998, 282 (5396) :2012-2018
[7]  
Cali BM, 1999, GENETICS, V151, P605
[8]   mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans [J].
Cali, BM ;
Anderson, P .
MOLECULAR AND GENERAL GENETICS, 1998, 260 (2-3) :176-184
[9]   A REGULATORY MECHANISM THAT DETECTS PREMATURE NONSENSE CODONS IN T-CELL RECEPTOR TRANSCRIPTS IN-VIVO IS REVERSED BY PROTEIN-SYNTHESIS INHIBITORS IN-VITRO [J].
CARTER, MS ;
DOSKOW, J ;
MORRIS, P ;
LI, SL ;
NHIM, RP ;
SANDSTEDT, S ;
WILKINSON, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28995-29003
[10]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995