Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria

被引:323
作者
Chang, TS
Cho, CS
Park, S
Yu, SQ
Kang, SW
Rhee, SG
机构
[1] NHLBI, Lab Cell Signaling, NIH, Bethesda, MD 20892 USA
[2] Ewha Womans Univ, Ctr Cell Signaling Res, Div Mol Life Sci, Seoul 120750, South Korea
关键词
D O I
10.1074/jbc.M407707200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Various proapoptotic stimuli increase the production of superoxide and H2O2 by mitochondria. Whereas superoxide impairs mitochondrial function and is removed by Mn2+-dependent superoxide dismutase, the role and metabolism of mitochondrial H2O2 during apoptosis have remained unclear. The effects on apoptotic signaling of depletion of peroxiredoxin (Prx) III, a mitochondrion-specific H2O2-scavenging enzyme, have now been investigated by RNA interference in HeLa cells. Depletion of Prx III resulted in increased intracellular levels of H2O2 and sensitized cells to induction of apoptosis by staurosporine or TNF-alpha. The rates of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation were increased in Prx III-depleted cells, and these effects were reversed by ectopic expression of Prx III or mitochondrion-targeted catalase. Depletion of Prx III also exacerbated damage to mitochondrial macromolecules induced by the proapoptotic stimuli. Our results suggest that Prx III is a critical regulator of the abundance of mitochondrial H2O2, which itself promotes apoptosis in cooperation with other mediators of apoptotic signaling.
引用
收藏
页码:41975 / 41984
页数:10
相关论文
共 87 条
[11]   Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin [J].
Chae, HZ ;
Kim, HJ ;
Kang, SW ;
Rhee, SG .
DIABETES RESEARCH AND CLINICAL PRACTICE, 1999, 45 (2-3) :101-112
[12]   HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS [J].
CHANCE, B ;
SIES, H ;
BOVERIS, A .
PHYSIOLOGICAL REVIEWS, 1979, 59 (03) :527-605
[13]   Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation [J].
Chang, TS ;
Jeong, W ;
Choi, SY ;
Yu, SQ ;
Kang, SW ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25370-25376
[14]   Conversion of Bcl-2 to a Bax-like death effector by caspases [J].
Cheng, EHY ;
Kirsch, DG ;
Clem, RJ ;
Ravi, R ;
Kastan, MB ;
Bedi, A ;
Ueno, K ;
Hardwick, JM .
SCIENCE, 1997, 278 (5345) :1966-1968
[15]  
Choi JH, 2002, ANTICANCER RES, V22, P3331
[16]   Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury [J].
Crack, PJ ;
Taylor, JM ;
Flentjar, NJ ;
de Haan, J ;
Hertzog, P ;
Iannello, RC ;
Kola, I .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (06) :1389-1399
[17]   Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide [J].
de Haan, JB ;
Bladier, C ;
Griffiths, P ;
Kelner, M ;
O'Shea, RD ;
Cheung, NS ;
Bronson, RT ;
Silvestro, MJ ;
Wild, S ;
Zheng, SS ;
Beart, PM ;
Hertzog, PJ ;
Kola, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (35) :22528-22536
[18]   The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver [J].
Esworthy, RS ;
Ho, YS ;
Chu, FF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1997, 340 (01) :59-63
[19]   Oxidants, oxidative stress and the biology of ageing [J].
Finkel, T ;
Holbrook, NJ .
NATURE, 2000, 408 (6809) :239-247
[20]  
Fujimura M, 1999, J NEUROSCI, V19, P3414