Gene selection using a two-level hierarchical Bayesian model

被引:113
作者
Bae, K [1 ]
Mallick, BK [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
D O I
10.1093/bioinformatics/bth419
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental problem of gene selection via cDNA data is to identify which genes are differentially expressed across different kinds of tissue samples (e.g. normal and cancer). cDNA data contain large number of variables (genes) and usually the sample size is relatively small so the selection process can be unstable. Therefore, models which incorporate sparsity in terms of variables (genes) are desirable for this kind of problem. This paper proposes a two-level hierarchical Bayesian model for variable selection which assumes a prior that favors sparseness. We adopt a Markov chain Monte Carlo (MCMC) based computation technique to simulate the parameters from the posteriors. The method is applied to leukemia data from a previous study and a published dataset on breast cancer.
引用
收藏
页码:3423 / 3430
页数:8
相关论文
共 38 条
[11]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[12]  
HARLAN DM, 1991, J BIOL CHEM, V266, P14399
[13]   ANTITUMOR EFFECTS OF L6, AN IGG2A ANTIBODY THAT REACTS WITH MOST HUMAN CARCINOMAS [J].
HELLSTROM, I ;
BEAUMIER, PL ;
HELLSTROM, KE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (18) :7059-7063
[14]  
HENDENFALK I, 2001, NEW ENGL J MED, V344, P539
[15]   A NEW HOMEOBOX GENE CONTRIBUTES THE DNA-BINDING DOMAIN OF THE T(1-19) TRANSLOCATION PROTEIN IN PRE-B ALL [J].
KAMPS, MP ;
MURRE, C ;
SUN, XH ;
BALTIMORE, D .
CELL, 1990, 60 (04) :547-555
[16]  
KIM S, 2002, J COMPUT BIOL, V7, P673
[17]  
KINGSMORE SF, 1995, MAMM GENOME, V6, P378, DOI 10.1007/BF00364809
[18]   Gene selection: a Bayesian variable selection approach [J].
Lee, KE ;
Sha, NJ ;
Dougherty, ER ;
Vannucci, M ;
Mallick, BK .
BIOINFORMATICS, 2003, 19 (01) :90-97
[19]   Bayesian automatic relevance determination algorithms for classifying gene expression data [J].
Li, Y ;
Campbell, C ;
Tipping, M .
BIOINFORMATICS, 2002, 18 (10) :1332-1339
[20]   Molecular characterization of human zyxin [J].
Macalma, T ;
Otte, J ;
Hensler, ME ;
Bockholt, SM ;
Louis, HA ;
KalffSuske, M ;
Grzeschik, KH ;
vonderAhe, D ;
Beckerle, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31470-31478