HTMD: High-Throughput Molecular Dynamics for Molecular Discovery

被引:308
作者
Doerr, S. [1 ]
Harvey, M. J. [2 ]
Noe, Frank [3 ]
De Fabritiis, G. [4 ]
机构
[1] Univ Pompeu Fabra, Computat Biophys Lab GRIB IMIM, Barcelona Biomed Res Pk PRBB,C Doctor Aiguader 88, Barcelona 08003, Spain
[2] Acellera, Barcelona Biomed Res Pk PRBB,C Doctor Aiguader 88, Barcelona 08003, Spain
[3] Free Univ Berlin, Dept Math Comp Sci & Bioinformat, Berlin, Germany
[4] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
关键词
LIGAND-BINDING; STATE MODELS; SIMULATIONS; VALIDATION; MODULATION; KINETICS; RECEPTOR; LIBRARY; ROBUST;
D O I
10.1021/acs.jctc.6b00049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features.
引用
收藏
页码:1845 / 1852
页数:8
相关论文
共 53 条
[11]   Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs [J].
Dror, Ron O. ;
Green, Hillary F. ;
Valant, Celine ;
Borhani, David W. ;
Valcourt, James R. ;
Pan, Albert C. ;
Arlow, Daniel H. ;
Canals, Meritxell ;
Lane, J. Robert ;
Rahmani, Raphael ;
Baell, Jonathan B. ;
Sexton, Patrick M. ;
Christopoulos, Arthur ;
Shaw, David E. .
NATURE, 2013, 503 (7475) :295-+
[12]   Conserve Water: A Method for the Analysis of Solvent in Molecular Dynamics [J].
Harrigan, Matthew P. ;
Shukla, Diwakar ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (03) :1094-1101
[13]   AceCloud: Molecular Dynamics Simulations in the Cloud [J].
Harvey, M. J. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (05) :909-914
[14]   ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale [J].
Harvey, M. J. ;
Giupponi, G. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (06) :1632-1639
[15]   High-throughput molecular dynamics: the powerful new tool for drug discovery [J].
Harvey, Matthew J. ;
De Fabritiis, Gianni .
DRUG DISCOVERY TODAY, 2012, 17 (19-20) :1059-1062
[16]   Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics [J].
Hinrichs, Nina Singhal ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[17]   Comparison of multiple amber force fields and development of improved protein backbone parameters [J].
Hornak, Viktor ;
Abel, Robert ;
Okur, Asim ;
Strockbine, Bentley ;
Roitberg, Adrian ;
Simmerling, Carlos .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 65 (03) :712-725
[18]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[19]   Mechanism of Voltage Gating in Potassium Channels [J].
Jensen, Morten O. ;
Jogini, Vishwanath ;
Borhani, David W. ;
Leffler, Abba E. ;
Dror, Ron O. ;
Shaw, David E. .
SCIENCE, 2012, 336 (6078) :229-233
[20]   ST-Analyzer: A Web-Based User Interface for Simulation Trajectory Analysis [J].
Jeong, Jong Cheol ;
Jo, Sunhwan ;
Wu, Emilia L. ;
Qi, Yifei ;
Monje-Galvan, Viviana ;
Yeom, Min Sun ;
Gorenstein, Lev ;
Chen, Feng ;
Klauda, Jeffery B. ;
Im, Wonpil .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (12) :957-963