HTMD: High-Throughput Molecular Dynamics for Molecular Discovery

被引:308
作者
Doerr, S. [1 ]
Harvey, M. J. [2 ]
Noe, Frank [3 ]
De Fabritiis, G. [4 ]
机构
[1] Univ Pompeu Fabra, Computat Biophys Lab GRIB IMIM, Barcelona Biomed Res Pk PRBB,C Doctor Aiguader 88, Barcelona 08003, Spain
[2] Acellera, Barcelona Biomed Res Pk PRBB,C Doctor Aiguader 88, Barcelona 08003, Spain
[3] Free Univ Berlin, Dept Math Comp Sci & Bioinformat, Berlin, Germany
[4] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
关键词
LIGAND-BINDING; STATE MODELS; SIMULATIONS; VALIDATION; MODULATION; KINETICS; RECEPTOR; LIBRARY; ROBUST;
D O I
10.1021/acs.jctc.6b00049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features.
引用
收藏
页码:1845 / 1852
页数:8
相关论文
共 53 条
[1]   Architecture and Membrane Interactions of the EGF Receptor [J].
Arkhipov, Anton ;
Shan, Yibing ;
Das, Rahul ;
Endres, Nicholas F. ;
Eastwood, Michael P. ;
Wemmer, David E. ;
Kuriyan, John ;
Shaw, David E. .
CELL, 2013, 152 (03) :557-569
[2]   A molecular simulation protocol to avoid sampling redundancy and discover new states [J].
Bacci, Marco ;
Vitalis, Andreas ;
Caflisch, Amedeo .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (05) :889-902
[3]   MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale [J].
Beauchamp, Kyle A. ;
Bowman, Gregory R. ;
Lane, Thomas J. ;
Maibaum, Lutz ;
Haque, Imran S. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (10) :3412-3419
[4]   Are current molecular dynamics force fields too helical? [J].
Best, Robert B. ;
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
BIOPHYSICAL JOURNAL, 2008, 95 (01) :L7-L9
[5]   Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models [J].
Bowman, Gregory R. ;
Ensign, Daniel L. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :787-794
[6]   Progress and challenges in the automated construction of Markov state models for full protein systems [J].
Bowman, Gregory R. ;
Beauchamp, Kyle A. ;
Boxer, George ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (12)
[7]   High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing [J].
Buch, I. ;
Harvey, M. J. ;
Giorgino, T. ;
Anderson, D. P. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (03) :397-403
[8]   Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations [J].
Buch, Ignasi ;
Giorgino, Toni ;
De Fabritiis, Gianni .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (25) :10184-10189
[9]   Robust Perron cluster analysis in conformation dynamics [J].
Deuflhard, P ;
Weber, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 398 :161-184
[10]   On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations [J].
Doerr, S. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) :2064-2069