The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment

被引:30
作者
Chibani, Kamel [1 ]
Couturier, Jeremy [1 ]
Selles, Benjamin [1 ]
Jacquot, Jean-Pierre [1 ]
Rouhier, Nicolas [1 ]
机构
[1] Nancy Univ, Unite Mixte Rech INRA 1136, Interact Arbre Microorganismes IFR EFABA 110, F-54506 Vandoeuvre Les Nancy, France
关键词
Chloroplast; Glutaredoxin; Photosynthesis; Stress; Thioredoxin; NADP-MALATE DEHYDROGENASE; METHIONINE SULFOXIDE REDUCTASE; FERREDOXIN-THIOREDOXIN REDUCTASE; GENOME-WIDE ANALYSIS; IRON-SULFUR PROTEIN; ARABIDOPSIS-THALIANA; CHLAMYDOMONAS-REINHARDTII; OXIDATIVE STRESS; GLUTATHIONE-PEROXIDASE; PHOTOOXIDATIVE STRESS;
D O I
10.1007/s11120-009-9501-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol-disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.
引用
收藏
页码:75 / 99
页数:25
相关论文
共 164 条
[1]   A novel type of thioredoxin dedicated to symbiosis in legumes [J].
Alkhalfioui, Fatima ;
Renard, Michelle ;
Frendo, Pierre ;
Keichinger, Corinne ;
Meyer, Yves ;
Gelhaye, Eric ;
Hirasawa, Masakazu ;
Knaff, David B. ;
Ritzenthaler, Christophe ;
Montrichard, Francxoise .
PLANT PHYSIOLOGY, 2008, 148 (01) :424-435
[2]   Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds [J].
Alkhalfioui, Fatima ;
Renard, Michelle ;
Vensel, William H. ;
Wong, Joshua ;
Tanaka, Charlene K. ;
Hurkman, William J. ;
Buchanan, Bob B. ;
Montrichard, Francoise .
PLANT PHYSIOLOGY, 2007, 144 (03) :1559-1579
[3]   Alkyl hydroperoxide reductases: the way out of the oxidative breakdown of lipids in chloroplasts [J].
Baier, M ;
Dietz, KJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (05) :166-168
[4]   Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin [J].
Ballicora, MA ;
Frueauf, JB ;
Fu, YB ;
Schürmann, P ;
Preiss, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1315-1320
[5]   Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability [J].
Balmer, Y ;
Vensel, WH ;
DuPont, FM ;
Buchanan, BB ;
Hurkman, WJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (07) :1591-1602
[6]   Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria [J].
Balmer, Y ;
Vensel, WH ;
Tanaka, CK ;
Hurkman, WJ ;
Gelhaye, E ;
Rouhier, N ;
Jacquot, JP ;
Manieri, W ;
Schüurmann, P ;
Droux, M ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2642-2647
[7]   Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Schürmann, P ;
Buchanan, BB .
PHOTOSYNTHESIS RESEARCH, 2004, 79 (03) :275-280
[8]   Proteomics gives insight into the regulatory function of chloroplast thioredoxins [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Manieri, W ;
Schürmann, P ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :370-375
[9]   Oxidation-reduction and activation properties of chloroplast fructose 1,6-bisphosphatase with mutated regulatory site [J].
Balmer, Y ;
Stritt-Etter, AL ;
Hirasawa, M ;
Jacquot, JP ;
Keryer, E ;
Knaff, DB ;
Schürmann, P .
BIOCHEMISTRY, 2001, 40 (50) :15444-15450
[10]   Thioredoxin target proteins in chloroplast thylakoid membranes [J].
Balmer, Yves ;
Vensel, William H. ;
Hurkman, William J. ;
Buchanan, Bob B. .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (9-10) :1829-1834