Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability

被引:98
作者
Balmer, Y
Vensel, WH
DuPont, FM
Buchanan, BB
Hurkman, WJ
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] ARS, USDA, Western Reg Res Ctr, Albany, CA 94710 USA
关键词
amyloplast proteins; amyloplast proteome; dithiothreitol; endosperm; Global Proteome Machine; GPM; isolated amyloplasts; membranes; wheat;
D O I
10.1093/jxb/erj156
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
By contrast to chloroplasts, our knowledge of amyloplasts-organelles that synthesize and store starch in heterotrophic plant tissues-is in a formative stage. While our understanding of what is considered their primary function, i.e. the biosynthesis and degradation of starch, has increased dramatically in recent years, relatively little is known about other biochemical processes taking place in these organelles. To help fill this gap, a proteomic analysis of amyloplasts isolated from the starchy endosperm of wheat seeds (10 d post-anthesis) has been conducted. The study has led to the identification of 289 proteins that function in a range of processes, including carbohydrate metabolism, cytoskeleton/plastid division, energetics, nitrogen and sulphur metabolism, nucleic acid-related reactions, synthesis of various building blocks, protein-related reactions, transport, signalling, stress, and a variety of other activities grouped under 'miscellaneous'. The function of 12% of the proteins was unknown. The results highlight the role of the amyloplast as a starch-storing organelle that fulfills a spectrum of biosynthetic needs of the parent tissue. When compared with a recent proteomic analysis of whole endosperm, the current study demonstrates the advantage of using isolated organelles in proteomic studies.
引用
收藏
页码:1591 / 1602
页数:12
相关论文
共 38 条
[1]   Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat [J].
Altenbach, SB ;
DuPont, FM ;
Kothari, KM ;
Chan, R ;
Johnson, EL ;
Lieu, D .
JOURNAL OF CEREAL SCIENCE, 2003, 37 (01) :9-20
[2]  
Andon NL, 2002, PROTEOMICS, V2, P1156, DOI 10.1002/1615-9861(200209)2:9<1156::AID-PROT1156>3.0.CO
[3]  
2-4
[4]   Purine and pyrimidine biosynthesis in higher plants [J].
Boldt, R ;
Zrenner, R .
PHYSIOLOGIA PLANTARUM, 2003, 117 (03) :297-304
[5]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[6]   TANDEM: matching proteins with tandem mass spectra [J].
Craig, R ;
Beavis, RC .
BIOINFORMATICS, 2004, 20 (09) :1466-1467
[7]   A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes [J].
Fenyö, D ;
Beavis, RC .
ANALYTICAL CHEMISTRY, 2003, 75 (04) :768-774
[8]   Transport of carbon in non-green plastids [J].
Fischer, K ;
Weber, A .
TRENDS IN PLANT SCIENCE, 2002, 7 (08) :345-351
[9]   In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts:: New proteins, new functions, and a plastid proteome database [J].
Friso, G ;
Giacomelli, L ;
Ytterberg, AJ ;
Peltier, JB ;
Rudella, A ;
Sun, Q ;
van Wijk, KJ .
PLANT CELL, 2004, 16 (02) :478-499
[10]   CHLOROPLAST RIBOSOMES AND PROTEIN-SYNTHESIS [J].
HARRIS, EH ;
BOYNTON, JE ;
GILLHAM, NW .
MICROBIOLOGICAL REVIEWS, 1994, 58 (04) :700-754