Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia

被引:289
作者
Chan, PH
机构
[1] Stanford Univ, Neurosurg Labs, Dept Neurosurg, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Program Neurosci, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Neurol & Neurol Sci, Sch Med, Stanford, CA 94305 USA
关键词
mitochondria; oxidative stress; cerebral ischemia; neuronal death signaling; neuronal survival signaling; PI3-K/Akt;
D O I
10.1007/s11064-004-6869-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apoptotic cell death pathways have been implicated in acute brain injuries, including cerebral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative diseases. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and suggest the involvement of mitochondria and the cell survival/death signaling pathways in cell death/survival cascades. Recent studies have implicated mitochondria-dependent apoptosis involving pro- and antiapoptotic protein binding, the release of cytochrome c and second mitochondria-derived activator of caspase, the activation of downstream caspases-9 and -3, and DNA fragmentation. Reactive oxygen species are known to be significantly generated in the mitochondrial electron transport chain in the dysfunctional mitochondria during reperfusion after ischemia, and are also implicated in the survival signaling pathway that involves phosphatidylinositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival pathways may provide novel therapeutic strategies for clinical stroke.
引用
收藏
页码:1943 / 1949
页数:7
相关论文
共 67 条
[1]   Glutamate induced cell death: Apoptosis or necrosis? [J].
Ankarcrona, M .
GLUTAMATE SYNAPSE AS A THERAPEUTICAL TARGET: MOLECULAR ORGANIZATION AND PATHOLOGY OF THE GLUTAMATE SYNAPSE, 1998, 116 :265-272
[2]   RAF MEETS RAS - COMPLETING THE FRAMEWORK OF A SIGNAL-TRANSDUCTION PATHWAY [J].
AVRUCH, J ;
ZHANG, XF ;
KYRIAKIS, JM .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (07) :279-283
[3]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166
[4]   ERKS - A FAMILY OF PROTEIN-SERINE THREONINE KINASES THAT ARE ACTIVATED AND TYROSINE PHOSPHORYLATED IN RESPONSE TO INSULIN AND NGF [J].
BOULTON, TG ;
NYE, SH ;
ROBBINS, DJ ;
IP, NY ;
RADZIEJEWSKA, E ;
MORGENBESSER, SD ;
DEPINHO, RA ;
PANAYOTATOS, N ;
COBB, MH ;
YANCOPOULOS, GD .
CELL, 1991, 65 (04) :663-675
[5]   Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors [J].
Bruce, AJ ;
Boling, W ;
Kindy, MS ;
Peschon, J ;
Kraemer, PJ ;
Carpenter, MK ;
Holtsberg, FW ;
Mattson, MP .
NATURE MEDICINE, 1996, 2 (07) :788-794
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[8]   Structural and biochemical basis of apoptotic activation by Smac/DIABLO [J].
Chai, JJ ;
Du, CY ;
Wu, JW ;
Kyin, S ;
Wang, XD ;
Shi, YG .
NATURE, 2000, 406 (6798) :855-862
[9]   Reactive oxygen radicals in signaling and damage in the ischemic brain [J].
Chan, PH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (01) :2-14
[10]   Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion [J].
Chan, PH ;
Kawase, M ;
Murakami, K ;
Chen, SF ;
Li, YB ;
Calagui, B ;
Reola, L ;
Carlson, E ;
Epstein, CJ .
JOURNAL OF NEUROSCIENCE, 1998, 18 (20) :8292-8299