Selection of relevant features and examples in machine learning

被引:2080
作者
Blum, AL [1 ]
Langley, P
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Inst Study Learning & Expertise, Palo Alto, CA 94306 USA
[3] Daimler Benz AG, Res & Technol Ctr, Intelligent Syst Lab, Palo Alto, CA 94304 USA
关键词
relevant features; relevant examples; machine learning;
D O I
10.1016/S0004-3702(97)00063-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples, We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area, (C) 1997 Elsevier Science B.V.
引用
收藏
页码:245 / 271
页数:27
相关论文
共 102 条
[11]  
ARMSTRONG R, 1993, P AAAI SPR S INF GAT
[12]   Dynamic relevance: vision-based focus of attention using artificial neural networks [J].
Baluja, S ;
Pomerleau, D .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :381-395
[13]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[14]   LEARNING IN THE PRESENCE OF FINITELY OR INFINITELY MANY IRRELEVANT ATTRIBUTES [J].
BLUM, A ;
HELLERSTEIN, L ;
LITTLESTONE, N .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 50 (01) :32-40
[15]  
Blum A., 1993, Proceedings. 34th Annual Symposium on Foundations of Computer Science (Cat. No.93CH3368-8), P312, DOI 10.1109/SFCS.1993.366856
[16]  
Blum A., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P253, DOI 10.1145/195058.195147
[17]   LEARNING BOOLEAN FUNCTIONS IN AN INFINITE ATTRIBUTE SPACE [J].
BLUM, A .
MACHINE LEARNING, 1992, 9 (04) :373-386
[18]  
Blum A., 1995, P 12 INT C MACH LEAR, P64
[19]   OCCAM RAZOR [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
INFORMATION PROCESSING LETTERS, 1987, 24 (06) :377-380
[20]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965