Numerous potentially functional but non-genic conserved sequences on human chromosome 21

被引:186
作者
Dermitzakis, ET
Reymond, A
Lyle, R
Scamuffa, N
Ucla, C
Deutsch, S
Stevenson, BJ
Flegel, V
Bucher, P
Jongeneel, CV
Antonarakis, SE
机构
[1] Univ Geneva, Sch Med, Div Med Genet, CH-1211 Geneva, Switzerland
[2] Univ Hosp Geneva, CH-1211 Geneva, Switzerland
[3] Ludwig Inst Canc Res, Off Informat Technol, CH-1066 Epalinges, Switzerland
[4] Ludwig Inst Canc Res, Swiss Inst Bioinformat, CH-1066 Epalinges, Switzerland
[5] Ludwig Inst Canc Res, Swiss Inst Expt Canc Res, CH-1066 Epalinges, Switzerland
关键词
D O I
10.1038/nature01251
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of comparative genomics to infer genome function relies on the understanding of how different components of the genome change over evolutionary time(1-3). The aim of such comparative analysis is to identify conserved, functionally transcribed sequences such as protein-coding genes and non-coding RNA genes, and other functional sequences such as regulatory regions(4,5), as well as other genomic features. Here, we have compared the entire human chromosome 21 with syntenic regions of the mouse genome, and have identified a large number of conserved blocks of unknown function. Although previous studies have made similar observations(6,7), it is unknown whether these conserved sequences are genes or not. Here we present an extensive experimental and computational analysis of human chromosome 21 in an effort to assign function to sequences conserved between human chromosome 21 (ref. 8) and the syntenic mouse regions. Our data support the presence of a large number of potentially functional non-genic sequences, probably regulatory and structural. The integration of the properties of the conserved components of human chromosome 21 to the rapidly accumulating functional data for this chromosome 9,10 will improve considerably our understanding of the role of sequence conservation in mammalian genomes.
引用
收藏
页码:578 / 582
页数:6
相关论文
共 30 条
[1]  
[Anonymous], SCIENCE
[2]  
Antonarakis SE, 2002, INT J DEV BIOL, V46, P89
[3]   Evolutionary breakpoints on human chromosome 21 [J].
Davisson, MT ;
Bechtel, LJ ;
Akeson, EC ;
Fortna, A ;
Slavov, D ;
Gardiner, K .
GENOMICS, 2001, 78 (1-2) :99-106
[4]   Evolution of transcription factor binding sites in mammalian gene regulatory regions: Conservation and turnover [J].
Dermitzakis, ET ;
Clark, AG .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (07) :1114-1121
[5]   Generation and comparative analysis of ∼3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome [J].
DeSilva, U ;
Elnitski, L ;
Idol, JR ;
Doyle, JL ;
Gan, WN ;
Thomas, JW ;
Schwartz, S ;
Dietrich, NL ;
Beckstrom-Sternberg, SM ;
McDowell, JC ;
Blakesley, RW ;
Bouffard, GG ;
Thomas, PJ ;
Touchman, JW ;
Miller, W ;
Green, ED .
GENOME RESEARCH, 2002, 12 (01) :3-15
[6]   Active conservation of noncoding sequences revealed by three-way species comparisons [J].
Dubchak, I ;
Brudno, M ;
Loots, GG ;
Pachter, L ;
Mayor, C ;
Rubin, EM ;
Frazer, KA .
GENOME RESEARCH, 2000, 10 (09) :1304-1306
[7]   Intra- and interspecific variation in primate gene expression patterns [J].
Enard, W ;
Khaitovich, P ;
Klose, J ;
Zöllner, S ;
Heissig, F ;
Giavalisco, P ;
Nieselt-Struwe, K ;
Muchmore, E ;
Varki, A ;
Ravid, R ;
Doxiadis, GM ;
Bontrop, RE ;
Pääbo, S .
SCIENCE, 2002, 296 (5566) :340-343
[8]   The evolution of isochores [J].
Eyre-Walker, A ;
Hurst, LD .
NATURE REVIEWS GENETICS, 2001, 2 (07) :549-555
[9]   Evolutionarily conserved sequences on human chromosome 21 [J].
Frazer, KA ;
Sheehan, JB ;
Stokowski, RP ;
Chen, XY ;
Hosseini, R ;
Cheng, JF ;
Fodor, SPA ;
Cox, DR ;
Patil, N .
GENOME RESEARCH, 2001, 11 (10) :1651-1659
[10]   Annotation of human chromosome 21 for relevance to Down syndrome: Gene structure and expression analysis [J].
Gardiner, K ;
Slavov, D ;
Bechtel, L ;
Davisson, M .
GENOMICS, 2002, 79 (06) :833-843