Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells

被引:493
作者
Dantuma, NP [1 ]
Lindsten, K [1 ]
Glas, R [1 ]
Jellne, M [1 ]
Masucci, MG [1 ]
机构
[1] Karolinska Inst, Ctr Microbiol & Tumor Biol, S-17177 Stockholm, Sweden
关键词
ubiquitin/proteasome pathway; green fluorescent protein (GFP); proteasome inhibitor; cytotoxicity; cancer;
D O I
10.1038/75406
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ubiquitin/proteasome-dependent proteolytic pathway is an attractive target for therapeutics because of its critical involvement in cell cycle progression and antigen presentation. However, dissection of the pathway and development of modulators are hampered by the complexity of the system and the lack of easily detectable authentic substrates. We have developed a convenient reporter system by producing N-end rule and ubiquitin fusion degradation (UFD)-targeted green fluorescent proteins that allow quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Accumulation of these reporters serves as an early predictor of G2/M arrest and apoptosis in cells treated with proteasome inhibitors. Comparison of reporter accumulation and cleavage of fluorogenic substrates demonstrates that the rate-limiting chymotrypsin-like activity of the proteasome can be substantially curtailed without significant effect on ubiquitin-dependent proteolysis. These reporters provide a new powerful tool for elucidation of the ubiquitin/proteasome pathway and for high throughput screening of compounds that selectively modify proteolysis in vivo.
引用
收藏
页码:538 / 543
页数:6
相关论文
共 32 条
[11]   Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands [J].
Dick, TP ;
Ruppert, T ;
Groettrup, M ;
Kloetzel, PM ;
Kuehn, L ;
Koszinowski, UH ;
Stevanovic, S ;
Schild, H ;
Rammensee, HG .
CELL, 1996, 86 (02) :253-262
[12]   Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway [J].
Falnes, PO ;
Olsnes, S .
EMBO JOURNAL, 1998, 17 (02) :615-625
[13]   THE YEAST POLYUBIQUITIN GENE IS ESSENTIAL FOR RESISTANCE TO HIGH-TEMPERATURES, STARVATION, AND OTHER STRESSES [J].
FINLEY, D ;
OZKAYNAK, E ;
VARSHAVSKY, A .
CELL, 1987, 48 (06) :1035-1046
[14]   GAMMA-INTERFERON AND EXPRESSION OF MHC GENES REGULATE PEPTIDE HYDROLYSIS BY PROTEASOMES [J].
GACZYNSKA, M ;
ROCK, KL ;
GOLDBERG, AL .
NATURE, 1993, 365 (6443) :264-267
[15]  
GONDA DK, 1989, J BIOL CHEM, V264, P16700
[16]   PROTEINASE YSCE, THE YEAST PROTEASOME/MULTICATALYTIC-MULTIFUNCTIONAL PROTEINASE - MUTANTS UNRAVEL ITS FUNCTION IN STRESS-INDUCED PROTEOLYSIS AND UNCOVER ITS NECESSITY FOR CELL-SURVIVAL [J].
HEINEMEYER, W ;
KLEINSCHMIDT, JA ;
SAIDOWSKY, J ;
ESCHER, C ;
WOLF, DH .
EMBO JOURNAL, 1991, 10 (03) :555-562
[17]   The ubiquitin system [J].
Hershko, A ;
Ciechanover, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :425-479
[18]   MULTIPLE PROTEOLYTIC SYSTEMS, INCLUDING THE PROTEASOME, CONTRIBUTE TO CFTR PROCESSING [J].
JENSEN, TJ ;
LOO, MA ;
PIND, S ;
WILLIAMS, DB ;
GOLDBERG, AL ;
RIORDAN, JR .
CELL, 1995, 83 (01) :129-135
[19]   A PROTEOLYTIC PATHWAY THAT RECOGNIZES UBIQUITIN AS A DEGRADATION SIGNAL [J].
JOHNSON, ES ;
MA, PCM ;
OTA, IM ;
VARSHAVSKY, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17442-17456
[20]   Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown [J].
Kisselev, AF ;
Akopian, TN ;
Castillo, V ;
Goldberg, AL .
MOLECULAR CELL, 1999, 4 (03) :395-402