The synchronization of chaotic systems

被引:2251
作者
Boccaletti, S
Kurths, J
Osipov, G
Valladares, DL
Zhou, CS
机构
[1] Ist Nazl Ottica Applicatat, I-50135 Florence, Italy
[2] Univ Navarra, Inst Phys, Dept Phys & Appl Math, Pamplona 31080, Spain
[3] Univ Potsdam, Inst Phys, D-14415 Potsdam, Germany
[4] Nizhny Novgorod Univ, Dept Radiophys, Nizhnii Novgorod 603600, Russia
[5] Univ Nac San Luis, Dept Phys, San Luis, Argentina
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2002年 / 366卷 / 1-2期
关键词
D O I
10.1016/S0370-1573(02)00137-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronization of chaos refers to a process wherein two (or many) chaotic systems (either equivalent or nonequivalent) adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy). We review major ideas involved in the field of synchronization of chaotic systems, and present in detail several types of synchronization features: complete synchronization, lag synchronization, generalized synchronization, phase and imperfect phase synchronization. We also discuss problems connected with characterizing synchronized states in extended pattern fort-ning systems. Finally, we point out the relevance of chaos synchronization, especially in physiology, nonlinear optics and fluid dynamics, and give a review of relevant experimental applications of these ideas and techniques. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:1 / 101
页数:101
相关论文
共 351 条
[31]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[32]   EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans [J].
Bhattacharya, J ;
Petsche, H ;
Feldmann, U ;
Rescher, B .
NEUROSCIENCE LETTERS, 2001, 311 (01) :29-32
[33]   Application of non-linear analysis to intensity oscillations of the chromospheric bright points [J].
Bhattacharya, J ;
Pereda, E ;
Kariyappa, R ;
Kanjilal, PP .
SOLAR PHYSICS, 2001, 199 (02) :267-290
[34]   Musicians and the gamma band: a secret affair? [J].
Bhattacharya, J ;
Petsche, H .
NEUROREPORT, 2001, 12 (02) :371-374
[35]   Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music -: art. no. 012902 [J].
Bhattacharya, J ;
Petsche, H .
PHYSICAL REVIEW E, 2001, 64 (01) :4
[36]   Spatial population dynamics: analyzing patterns and processes of population synchrony [J].
Bjornstad, ON ;
Ims, RA ;
Lambin , X .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (11) :427-432
[37]  
Blackadar A. K., 1997, TURBULENCE DIFFUSION
[38]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[39]   Chaos and phase synchronization in ecological systems [J].
Blasius, B ;
Stone, L .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (10) :2361-2380
[40]   On self-synchronization and controlled synchronization [J].
Blekhman, II ;
Fradkov, AL ;
Nijmeijer, H ;
Pogromsky, AY .
SYSTEMS & CONTROL LETTERS, 1997, 31 (05) :299-305