The synchronization of chaotic systems

被引:2251
作者
Boccaletti, S
Kurths, J
Osipov, G
Valladares, DL
Zhou, CS
机构
[1] Ist Nazl Ottica Applicatat, I-50135 Florence, Italy
[2] Univ Navarra, Inst Phys, Dept Phys & Appl Math, Pamplona 31080, Spain
[3] Univ Potsdam, Inst Phys, D-14415 Potsdam, Germany
[4] Nizhny Novgorod Univ, Dept Radiophys, Nizhnii Novgorod 603600, Russia
[5] Univ Nac San Luis, Dept Phys, San Luis, Argentina
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2002年 / 366卷 / 1-2期
关键词
D O I
10.1016/S0370-1573(02)00137-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronization of chaos refers to a process wherein two (or many) chaotic systems (either equivalent or nonequivalent) adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy). We review major ideas involved in the field of synchronization of chaotic systems, and present in detail several types of synchronization features: complete synchronization, lag synchronization, generalized synchronization, phase and imperfect phase synchronization. We also discuss problems connected with characterizing synchronized states in extended pattern fort-ning systems. Finally, we point out the relevance of chaos synchronization, especially in physiology, nonlinear optics and fluid dynamics, and give a review of relevant experimental applications of these ideas and techniques. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:1 / 101
页数:101
相关论文
共 351 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]  
Abarbanel H. D. I., 1996, Physics-Uspekhi, V39, P337, DOI 10.1070/PU1996v039n04ABEH000141
[3]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[4]   Synchronisation in neural assemblies [J].
Abarbanel, HDI ;
Selverston, A ;
Huerta, R ;
Bazhenov, MV ;
Sushchik, MM ;
Rubchinskii, LL ;
Rabinovich, MI .
USPEKHI FIZICHESKIKH NAUK, 1996, 166 (04) :363-390
[5]  
AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
[6]  
AFRAIMOVICH VS, 1995, STABILITY STRUCTURES
[7]   Synchronization of homoclinic chaos [J].
Allaria, E ;
Arecchi, FT ;
Di Garbo, A ;
Meucci, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :791-794
[8]   Synchronization of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency [J].
Amengual, A ;
HernandezGarcia, E ;
Montagne, R ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4379-4382
[9]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[10]   Noise scaling of phase synchronization of chaos [J].
Andrade, V ;
Davidchack, RL ;
Lai, YC .
PHYSICAL REVIEW E, 2000, 61 (03) :3230-3233