Building carbon-carbon bonds using a biocatalytic methanol condensation cycle

被引:126
作者
Bogorad, Igor W. [1 ,2 ]
Chen, Chang-Ting [1 ]
Theisen, Matthew K. [1 ,2 ]
Wu, Tung-Yun [1 ]
Schlenz, Alicia R. [1 ]
Lam, Albert T. [1 ]
Liao, James C. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
methanol metabolism; metabolic engineering; cell-free synthesis; bio-ethanol; bio-butanol; PYRUVATE FORMATE-LYASE; ESCHERICHIA-COLI; DEHYDROGENASE; FRUCTOSE-6-PHOSPHATE; CHROMATOGRAPHY; HYDROCARBONS; PERFORMANCE; METABOLISM; CONVERSION; ADHE;
D O I
10.1073/pnas.1413470111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through C-13-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
引用
收藏
页码:15928 / 15933
页数:6
相关论文
共 35 条
[1]   MICROBIAL OXIDATION OF METHANOL - PROSTHETIC GROUP OF ALCOHOL DEHYDROGENASE OF PSEUDOMONAS SP M27 - A NEW OXIDOREDUCTASE PROSTHETIC GROUP [J].
ANTHONY, C ;
ZATMAN, LJ .
BIOCHEMICAL JOURNAL, 1967, 104 (03) :960-&
[2]   METHANOL METABOLISM IN THERMOTOLERANT METHYLOTROPHIC BACILLUS STRAINS INVOLVING A NOVEL CATABOLIC NAD-DEPENDENT METHANOL DEHYDROGENASE AS A KEY ENZYME [J].
ARFMAN, N ;
WATLING, EM ;
CLEMENT, W ;
VANOOSTERWIJK, RJ ;
DEVRIES, GE ;
HARDER, W ;
ATTWOOD, MM ;
DIJKHUIZEN, L .
ARCHIVES OF MICROBIOLOGY, 1989, 152 (03) :280-288
[3]   Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH [J].
Bjorgen, Morten ;
Joensen, Finn ;
Holm, Martin Spangsberg ;
Olsbye, Unni ;
Lillerud, Karl-Petter ;
Svelle, Stian .
APPLIED CATALYSIS A-GENERAL, 2008, 345 (01) :43-50
[4]   Synthetic non-oxidative glycolysis enables complete carbon conservation [J].
Bogorad, Igor W. ;
Lin, Tzu-Shyang ;
Liao, James C. .
NATURE, 2013, 502 (7473) :693-+
[5]   Methane as raw material in synthetic chemistry: the final frontier [J].
Caballero, Ana ;
Perez, Pedro J. .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (23) :8809-8820
[6]   HYDROCARBONS FROM METHANOL [J].
CHANG, CD .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1983, 25 (01) :1-118
[7]   Envisioning the Bioconversion of Methane to Liquid Fuels [J].
Conrado, Robert J. ;
Gonzalez, Ramon .
SCIENCE, 2014, 343 (6171) :621-623
[8]   CLONING, EXPRESSION, AND SEQUENCE-ANALYSIS OF THE BACILLUS-METHANOLICUS C1 METHANOL DEHYDROGENASE GENE [J].
DEVRIES, GE ;
ARFMAN, N ;
TERPSTRA, P ;
DIJKHUIZEN, L .
JOURNAL OF BACTERIOLOGY, 1992, 174 (16) :5346-5353
[9]  
Fiedler E, 2012, ULLMANNS ENCY IND CH, P1
[10]   FORMATION OF HIGHER ALCOHOLS FROM METHANOL IN THE PRESENCE OF METAL ACETYLIDES [J].
FOX, JR ;
PESA, FA ;
CURATOLO, BS .
JOURNAL OF CATALYSIS, 1984, 90 (01) :127-138