共 32 条
Synthetic non-oxidative glycolysis enables complete carbon conservation
被引:321
作者:
Bogorad, Igor W.
[1
,2
]
Lin, Tzu-Shyang
[1
]
Liao, James C.
[1
,3
]
机构:
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA
来源:
基金:
美国国家科学基金会;
关键词:
ESCHERICHIA-COLI;
PATHWAY;
FLUX;
ASSIMILATION;
METABOLISM;
CATABOLISM;
EXPRESSION;
CONVERSION;
PRODUCTS;
GLUCOSE;
D O I:
10.1038/nature12575
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Glycolysis, or its variations, is a fundamental metabolic pathway in life that functions in almost all organisms to decompose external or intracellular sugars. The pathway involves the partial oxidation and splitting of sugars to pyruvate, which in turn is decarboxylated to produce acetyl-coenzyme A (CoA) for various biosynthetic purposes. The decarboxylation of pyruvate loses a carbon equivalent, and limits the theoretical carbon yield to only two moles of two-carbon (C2) metabolites per mole of hexose. This native route is a major source of carbon loss in biorefining and microbial carbon metabolism. Here we design and construct a non-oxidative, cyclic pathway that allows the production of stoichiometric amounts of C2 metabolites from hexose, pentose and triose phosphates without carbon loss. We tested this pathway, termed non-oxidative glycolysis (NOG), in vitro and in vivo in Escherichia coli. NOG enables complete carbon conservation in sugar catabolism to acetyl-CoA, and can be used in conjunction with CO2 fixation(1) and other one-carbon (C1) assimilation pathways(2) to achieve a 100% carbon yield to desirable fuels and chemicals.
引用
收藏
页码:693 / +
页数:6
相关论文