Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks

被引:92
作者
Liu, Junjie [1 ]
Bowman, Kevin W. [1 ]
Lee, Meemong [1 ]
Henze, Daven K. [2 ]
Bousserez, Nicolas [2 ]
Brix, Holger [3 ]
Collatz, G. James [4 ]
Menemenlis, Dimitris [1 ]
Ott, Lesley [4 ]
Pawson, Steven [4 ]
Jones, Dylan [5 ]
Nassar, Ray [6 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Toronto, Toronto, ON, Canada
[6] Environm Canada, Toronto, ON, Canada
关键词
NASA CMS-Flux; GOSAT; OCO-2; variational inversion; biased sampling; Monte Carlo; SATELLITE-OBSERVATIONS; ATMOSPHERIC CO2; FIRE EMISSIONS; SURFACE; CYCLE; ADJOINT; OCEAN; LAND; TRANSPORT; MODEL;
D O I
10.3402/tellusb.v66.22486
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Using an Observing System Simulation Experiment (OSSE), we investigate the impact of JAXA Greenhouse gases Observing SATellite 'IBUKI' (GOSAT) sampling on the estimation of terrestrial biospheric flux with the NASA Carbon Monitoring System Flux (CMS-Flux) estimation and attribution strategy. The simulated observations in the OSSE use the actual column carbon dioxide (X-CO2) b2.9 retrieval sensitivity and quality control for the year 2010 processed through the Atmospheric CO2 Observations from Space algorithm. CMSFlux is a variational inversion system that uses the GEOS-Chem forward and adjoint model forced by a suite of observationally constrained fluxes from ocean, land and anthropogenic models. We investigate the impact of GOSAT sampling on flux estimation in two aspects: 1) random error uncertainty reduction and 2) the global and regional bias in posterior flux resulted from the spatiotemporally biased GOSAT sampling. Based on Monte Carlo calculations, we find that global average flux uncertainty reduction ranges from 25% in September to 60% in July. When aggregated to the 11 land regions designated by the phase 3 of the Atmospheric Tracer Transport Model Intercomparison Project, the annual mean uncertainty reduction ranges from 10% over North American boreal to 38% over South American temperate, which is driven by observational coverage and the magnitude of prior flux uncertainty. The uncertainty reduction over the South American tropical region is 30%, even with sparse observation coverage. We show that this reduction results from the large prior flux uncertainty and the impact of non-local observations. Given the assumed prior error statistics, the degree of freedom for signal is similar to 1132 for 1-yr of the 74 055 GOSAT X-CO2 observations, which indicates that GOSAT provides similar to 1132 independent pieces of information about surface fluxes. We quantify the impact of GOSAT's spatiotemporally sampling on the posterior flux, and find that a 0.7 gigatons of carbon bias in the global annual posterior flux resulted from the seasonally and diurnally biased sampling when using a diagonal prior flux error covariance.
引用
收藏
页数:18
相关论文
共 73 条
[61]  
Tarantola A., 2005, INVERSE PROBLEM THEO
[62]   Adjoints of nonoscillatory advection schemes [J].
Thuburn, J ;
Haine, TWN .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :616-631
[63]   An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data [J].
Tucker, CJ ;
Pinzon, JE ;
Brown, ME ;
Slayback, DA ;
Pak, EW ;
Mahoney, R ;
Vermote, EF ;
El Saleous, N .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (20) :4485-4498
[64]   Interannual variability in global biomass burning emissions from 1997 to 2004 [J].
van der Werf, G. R. ;
Randerson, J. T. ;
Giglio, L. ;
Collatz, G. J. ;
Kasibhatla, P. S. ;
Arellano, A. F., Jr. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3423-3441
[65]   Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) [J].
van der Werf, G. R. ;
Randerson, J. T. ;
Giglio, L. ;
Collatz, G. J. ;
Mu, M. ;
Kasibhatla, P. S. ;
Morton, D. C. ;
DeFries, R. S. ;
Jin, Y. ;
van Leeuwen, T. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (23) :11707-11735
[66]   Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period [J].
van der Werf, GR ;
Randerson, JT ;
Collatz, GJ ;
Giglio, L ;
Kasibhatla, PS ;
Arellano, AF ;
Olsen, SC ;
Kasischke, ES .
SCIENCE, 2004, 303 (5654) :73-76
[67]  
Vukicevic T, 2001, MON WEATHER REV, V129, P1221, DOI 10.1175/1520-0493(2001)129<1221:POAAIT>2.0.CO
[68]  
2
[69]   A method for evaluating bias in global measurements of CO2 total columns from space [J].
Wunch, D. ;
Wennberg, P. O. ;
Toon, G. C. ;
Connor, B. J. ;
Fisher, B. ;
Osterman, G. B. ;
Frankenberg, C. ;
Mandrake, L. ;
O'Dell, C. ;
Ahonen, P. ;
Biraud, S. C. ;
Castano, R. ;
Cressie, N. ;
Crisp, D. ;
Deutscher, N. M. ;
Eldering, A. ;
Fisher, M. L. ;
Griffith, D. W. T. ;
Gunson, M. ;
Heikkinen, P. ;
Keppel-Aleks, G. ;
Kyro, E. ;
Lindenmaier, R. ;
Macatangay, R. ;
Mendonca, J. ;
Messerschmidt, J. ;
Miller, C. E. ;
Morino, I. ;
Notholt, J. ;
Oyafuso, F. A. ;
Rettinger, M. ;
Robinson, J. ;
Roehl, C. M. ;
Salawitch, R. J. ;
Sherlock, V. ;
Strong, K. ;
Sussmann, R. ;
Tanaka, T. ;
Thompson, D. R. ;
Uchino, O. ;
Warneke, T. ;
Wofsy, S. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) :12317-12337
[70]   Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation [J].
Yadav, V. ;
Michalak, A. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) :583-590