Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks

被引:92
作者
Liu, Junjie [1 ]
Bowman, Kevin W. [1 ]
Lee, Meemong [1 ]
Henze, Daven K. [2 ]
Bousserez, Nicolas [2 ]
Brix, Holger [3 ]
Collatz, G. James [4 ]
Menemenlis, Dimitris [1 ]
Ott, Lesley [4 ]
Pawson, Steven [4 ]
Jones, Dylan [5 ]
Nassar, Ray [6 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Toronto, Toronto, ON, Canada
[6] Environm Canada, Toronto, ON, Canada
关键词
NASA CMS-Flux; GOSAT; OCO-2; variational inversion; biased sampling; Monte Carlo; SATELLITE-OBSERVATIONS; ATMOSPHERIC CO2; FIRE EMISSIONS; SURFACE; CYCLE; ADJOINT; OCEAN; LAND; TRANSPORT; MODEL;
D O I
10.3402/tellusb.v66.22486
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Using an Observing System Simulation Experiment (OSSE), we investigate the impact of JAXA Greenhouse gases Observing SATellite 'IBUKI' (GOSAT) sampling on the estimation of terrestrial biospheric flux with the NASA Carbon Monitoring System Flux (CMS-Flux) estimation and attribution strategy. The simulated observations in the OSSE use the actual column carbon dioxide (X-CO2) b2.9 retrieval sensitivity and quality control for the year 2010 processed through the Atmospheric CO2 Observations from Space algorithm. CMSFlux is a variational inversion system that uses the GEOS-Chem forward and adjoint model forced by a suite of observationally constrained fluxes from ocean, land and anthropogenic models. We investigate the impact of GOSAT sampling on flux estimation in two aspects: 1) random error uncertainty reduction and 2) the global and regional bias in posterior flux resulted from the spatiotemporally biased GOSAT sampling. Based on Monte Carlo calculations, we find that global average flux uncertainty reduction ranges from 25% in September to 60% in July. When aggregated to the 11 land regions designated by the phase 3 of the Atmospheric Tracer Transport Model Intercomparison Project, the annual mean uncertainty reduction ranges from 10% over North American boreal to 38% over South American temperate, which is driven by observational coverage and the magnitude of prior flux uncertainty. The uncertainty reduction over the South American tropical region is 30%, even with sparse observation coverage. We show that this reduction results from the large prior flux uncertainty and the impact of non-local observations. Given the assumed prior error statistics, the degree of freedom for signal is similar to 1132 for 1-yr of the 74 055 GOSAT X-CO2 observations, which indicates that GOSAT provides similar to 1132 independent pieces of information about surface fluxes. We quantify the impact of GOSAT's spatiotemporally sampling on the posterior flux, and find that a 0.7 gigatons of carbon bias in the global annual posterior flux resulted from the seasonally and diurnally biased sampling when using a diagonal prior flux error covariance.
引用
收藏
页数:18
相关论文
共 73 条
[1]   Monthly, global emissions of carbon dioxide from fossil fuel consumption [J].
Andres, R. J. ;
Gregg, J. S. ;
Losey, L. ;
Marland, G. ;
Boden, T. A. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (03) :309-327
[2]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[3]   Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory [J].
Baker, D. F. ;
Boesch, H. ;
Doney, S. C. ;
O'Brien, D. ;
Schimel, D. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (09) :4145-4165
[4]   Global CO2 fluxes estimated from GOSAT retrievals of total column CO2 [J].
Basu, S. ;
Guerlet, S. ;
Butz, A. ;
Houweling, S. ;
Hasekamp, O. ;
Aben, I. ;
Krummel, P. ;
Steele, P. ;
Langenfelds, R. ;
Torn, M. ;
Biraud, S. ;
Stephens, B. ;
Andrews, A. ;
Worthy, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (17) :8695-8717
[5]   Attribution of direct ozone radiative forcing to spatially resolved emissions [J].
Bowman, K. ;
Henze, D. K. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[6]   REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS [J].
BYRD, RH ;
NOCEDAL, J ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1994, 63 (02) :129-156
[7]   Inferring CO2 sources and sinks from satellite observations:: Method and application to TOVS data -: art. no. D24309 [J].
Chevallier, F ;
Fisher, M ;
Peylin, P ;
Serrar, S ;
Bousquet, P ;
Bréon, FM ;
Chédin, A ;
Ciais, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D24) :1-13
[8]   Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks:: Theoretical study in a variational data assimilation framework [J].
Chevallier, Frederic ;
Breon, Francois-Marie ;
Rayner, Peter J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D9)
[9]   What eddy-covariance measurements tell us about prior land flux errors in CO2-flux inversion schemes [J].
Chevallier, Frederic ;
Wang, Tao ;
Ciais, Philippe ;
Maignan, Fabienne ;
Bocquet, Marc ;
Arain, M. Altaf ;
Cescatti, Alessandro ;
Chen, Jiquan ;
Dolman, A. Johannes ;
Law, Beverly E. ;
Margolis, Hank A. ;
Montagnani, Leonardo ;
Moors, Eddy J. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2012, 26
[10]   On the impact of transport model errors for the estimation of CO2 surface fluxes from GOSAT observations [J].
Chevallier, Frederic ;
Feng, Liang ;
Boesch, Hartmut ;
Palmer, Paul I. ;
Rayner, Peter J. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37