Frequent activation of AKT2 kinase in human pancreatic carcinomas (vol 87, pg 470, 2002)

被引:143
作者
Altomare, DA
Tanno, S
De Rienzo, A
Klein-Szanto, A
Tanno, S
Skele, KL
Hoffman, JP
Testa, JR
机构
[1] Fox Chase Canc Ctr, Human Genet Program, Philadelphia, PA 19111 USA
[2] Fox Chase Canc Ctr, Tumor Cell Biol Program, Philadelphia, PA 19111 USA
[3] Fox Chase Canc Ctr, Dept Surg Oncol, Philadelphia, PA 19111 USA
关键词
AKT2; serine-threonine kinase; oncogene; kinase activity; PTEN; phosphatidylinositol; 3-kinase; pancreatic cancer;
D O I
10.1002/jcb.10287
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of AKT/protein kinase B promotes a variety of biological activities important in tumorigenesis, such as cell survival and cell cycle progression. We previously demonstrated amplification and overexpression of the AKT2 gene in a subset of human pancreatic carcinomas. In this investigation, we assessed AKT2 catalytic activity in 50 frozen pancreatic tissues (37 carcinomas, four benign tumors, and nine normal pancreata) by in vitro kinase assay. Twelve of 37 (32%) pancreatic carcinomas showed markedly elevated levels of AKT2 activity compared to normal pancreata and benign pancreatic tumors. To delineate mechanisms contributing to AKT2 activation in malignant pancreatic tumors, we examined the status of upstream components of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Western blot analysis revealed loss of PTEN protein expression in two of the 12 pancreatic carcinomas with activated AKT2. In vitro PI3K assays demonstrated high levels of PI3K activity in seven carcinoma specimens that showed AKT2 activation. Immunohistochemical staining confirmed high levels of phosphorylated (active) AKT in malignant pancreatic tumors compared to normal pancreata. Overall, these data suggest that upstream perturbations of the PI3K/AKT pathway contribute to frequent activation of AKT2 in pancreatic cancer, which may contribute to the pathogenesis of this highly aggressive form of human malignancy.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 29 条
[1]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[2]   Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity [J].
Ali, IU ;
Schriml, LM ;
Dean, M .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1999, 91 (22) :1922-1932
[3]   Frequent activation of AKT2 kinase in human pancreatic carcinomas (vol 87, pg 470, 2002) [J].
Altomare, DA ;
Tanno, S ;
De Rienzo, A ;
Klein-Szanto, A ;
Tanno, S ;
Skele, KL ;
Hoffman, JP ;
Testa, JR .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 88 (01) :470-476
[4]   VISUAL INTERACTIVE MODELING - THE PAST, THE PRESENT, AND THE PROSPECTS [J].
BELL, PC .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1991, 54 (03) :274-286
[5]  
BERGMANN U, 1995, CANCER RES, V55, P2007
[6]  
Brognard J, 2001, CANCER RES, V61, P3986
[7]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[8]   New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway [J].
Cantley, LC ;
Neel, BG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4240-4245
[9]   Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase [J].
Chang, HW ;
Aoki, M ;
Fruman, D ;
Auger, KR ;
Bellacosa, A ;
Tsichlis, PN ;
Cantley, LC ;
Roberts, TM ;
Vogt, PK .
SCIENCE, 1997, 276 (5320) :1848-1850
[10]   Amplification of AKT2 in human pancreatic cancer cells and inhibition of ATK2 expression and tumorigenicity by antisense RNA [J].
Cheng, JQ ;
Ruggeri, B ;
Klein, WM ;
Sonoda, G ;
Altomare, DA ;
Watson, DK ;
Testa, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3636-3641