Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38

被引:699
作者
Madrid, LV
Mayo, MW
Reuther, JY
Baldwin, AS [1 ]
机构
[1] Univ N Carolina, Sch Med, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Sch Med, Curriculum Genet & Mol Biol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Sch Med, Dept Biol, Chapel Hill, NC 27599 USA
关键词
D O I
10.1074/jbc.M101103200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serine/threonine kinase Akt/PKB is a potent regulator of cell survival and has oncogenic transformation potential. Previously, it has been shown that Akt can activate the transcription factor NF-kappaB and that this functions to block apoptosis induced by certain stimuli. The mechanism whereby Akt activates NF-kappaB has been controversial, with evidence supporting induction of nuclear translocation of NF-kappaB via activation of I kappaB kinase activity and/or the stimulation of the transcription function of NF-kappaB. Here we demonstrate that Akt targets the transactivation function of NF-kappaB by stimulating the transactivation domain of RelA/p65 in a manner that is dependent on I kappaB kinase beta activity and on the mitogen-activated protein kinase p38 (p38), Activation of RelA/ p65 transactivation function requires serines 529 and 536, sites shown previously to be inducibly phosphorylated. Consistent with the requirement of p38 in the activation of NF-kappaB transcriptional function, expression of activated Akt induces p38 activity. Furthermore, the ability of IL-I beta to activate NF-kappaB is known to involve Akt, and we show here that IL-1 beta induces p38 activity in manner dependent on Akt and I kappaB kinase activation. Interestingly, activated Akt and the transcriptional coactivators CBP/p300 synergize in the activation of the RelA/p65 transactivation domain, and this synergy is blocked by p38 inhibitors. These studies demonstrate that Akt, functioning through I kappaB kinase and p38, induces the transcription function of NF-kappaB by stimulating the RelA/p65 transactivation subunit of NF-kappaB.
引用
收藏
页码:18934 / 18940
页数:7
相关论文
共 51 条
[1]   The Akt kinase:: Molecular determinants of oncogenicity [J].
Aoki, M ;
Batista, O ;
Bellacosa, A ;
Tsichlis, P ;
Vogt, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14950-14955
[2]   The NF-kappa B and I kappa B proteins: New discoveries and insights [J].
Baldwin, AS .
ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 :649-683
[3]   IκBα degradation and nuclear factor-κB DNA binding are insufficient for interleukin-1β and tumor necrosis factor-α-induced κB-dependent transcription -: Requirement for an additional activation pathway [J].
Bergmann, M ;
Hart, L ;
Lindsay, M ;
Barnes, PJ ;
Newton, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (12) :6607-6610
[4]   Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit [J].
Bird, TA ;
Schooley, K ;
Dower, SK ;
Hagen, H ;
Virca, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32606-32612
[5]   Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription [J].
Bonnard, M ;
Mirtsos, C ;
Suzuki, S ;
Graham, K ;
Huang, JN ;
Ng, M ;
Itié, A ;
Wakeham, A ;
Shahinian, A ;
Henzel, WJ ;
Elia, AJ ;
Shillinglaw, W ;
Mak, TW ;
Cao, ZD ;
Yeh, WC .
EMBO JOURNAL, 2000, 19 (18) :4976-4985
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[8]   The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression -: The role of TATA-binding protein (TBP) [J].
Carter, AB ;
Knudtson, KL ;
Monick, MM ;
Hunninghake, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30858-30863
[9]   AKT2, A PUTATIVE ONCOGENE ENCODING A MEMBER OF A SUBFAMILY OF PROTEIN-SERINE THREONINE KINASES, IS AMPLIFIED IN HUMAN OVARIAN CARCINOMAS [J].
CHENG, JQ ;
GODWIN, AK ;
BELLACOSA, A ;
TAGUCHI, T ;
FRANKE, TF ;
HAMILTON, TC ;
TSICHLIS, PN ;
TESTA, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9267-9271
[10]   Amplification of AKT2 in human pancreatic cancer cells and inhibition of ATK2 expression and tumorigenicity by antisense RNA [J].
Cheng, JQ ;
Ruggeri, B ;
Klein, WM ;
Sonoda, G ;
Altomare, DA ;
Watson, DK ;
Testa, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3636-3641