Molecular basis of mechanotransduction in living cells

被引:866
作者
Hamill, OP [1 ]
Martinac, B
机构
[1] Univ Texas, Med Branch, Galveston, TX 77555 USA
[2] Univ Western Australia, Dept Pharmacol, Nedlands, WA 6009, Australia
关键词
D O I
10.1152/physrev.2001.81.2.685
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca2+ release, and transmitter release) without increasing tension in the Lipid bilayer.
引用
收藏
页码:685 / 740
页数:56
相关论文
共 520 条
[1]   Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons [J].
Adams, CM ;
Anderson, MG ;
Motto, DG ;
Price, MP ;
Johnson, WA ;
Welsh, MJ .
JOURNAL OF CELL BIOLOGY, 1998, 140 (01) :143-152
[2]   Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells [J].
Ajouz, B ;
Berrier, C ;
Garrigues, A ;
Besnard, M ;
Ghazi, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (41) :26670-26674
[3]   Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension [J].
Ajouz, B ;
Berrier, C ;
Besnard, M ;
Martinac, B ;
Ghazi, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1015-1022
[4]   The breakdown of cell membranes by electrical and mechanical stress [J].
Akinlaja, J ;
Sachs, F .
BIOPHYSICAL JOURNAL, 1998, 75 (01) :247-254
[5]   REGULATION OF ION CHANNELS BY ABC TRANSPORTERS THAT SECRETE ATP [J].
ALAWQATI, Q .
SCIENCE, 1995, 269 (5225) :805-806
[6]   VOLTAGE-DEPENDENT CAPACITANCE IN LIPID BILAYERS MADE FROM MONOLAYERS [J].
ALVAREZ, O ;
LATORRE, R .
BIOPHYSICAL JOURNAL, 1978, 21 (01) :1-17
[7]   MOLECULAR DETERMINANTS OF CHANNEL FUNCTION [J].
ANDERSEN, OS ;
KOEPPE, RE .
PHYSIOLOGICAL REVIEWS, 1992, 72 (04) :S89-S158
[8]   Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E-coli [J].
Arkin, IT ;
Sukharev, SI ;
Blount, P ;
Kung, C ;
Brünger, AT .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1369 (01) :131-140
[9]   VOLTAGE DEPENDENCE OF ADAPTATION AND ACTIVE BUNDLE MOVEMENT IN BULLFROG SACCULAR HAIR-CELLS [J].
ASSAD, JA ;
HACOHEN, N ;
COREY, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2918-2922
[10]   TIP-LINK INTEGRITY AND MECHANICAL TRANSDUCTION IN VERTEBRATE HAIR-CELLS [J].
ASSAD, JA ;
SHEPHERD, GMG ;
COREY, DP .
NEURON, 1991, 7 (06) :985-994