Nitric oxide synthases: structure, function and inhibition

被引:3156
作者
Alderton, WK
Cooper, CE
Knowles, RG
机构
[1] GlaxoSmithKline Res & Dev Ltd, Med Res Ctr, In Vitro Pharmacol Dept, Stevenage SG1 2NY, Herts, England
[2] Univ Essex, Dept Biol Sci, Colchester CO4 3SQ, Essex, England
关键词
cofactor; free radical; haem enzyme; inhibitor; pterin;
D O I
10.1042/0264-6021:3570593
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
引用
收藏
页码:593 / 615
页数:23
相关论文
共 231 条
[1]   The ferrous-dioxy complex of neuronal nitric oxide synthase - Divergent effects of L-arginine and tetrahydrobiopterin on its stability [J].
AbuSoud, HM ;
Gachhui, R ;
Raushel, FM ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (28) :17349-17353
[2]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32047
[3]   NEURONAL NITRIC-OXIDE SYNTHASE SELF-INACTIVATES BY FORMING A FERROUS-NITROSYL COMPLEX DURING AEROBIC CATALYSIS [J].
ABUSOUD, HM ;
WANG, JL ;
ROUSSEAU, DL ;
FUKUTO, JM ;
IGNARRO, LJ ;
STUEHR, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22997-23006
[4]   Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension [J].
AbuSoud, HM ;
Rousseau, DL ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :32515-32518
[5]   Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition [J].
Adak, S ;
Crooks, C ;
Wang, Q ;
Crane, BR ;
Tainer, JA ;
Getzoff, ED ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :26907-26911
[6]   Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase - characterization of the FMN-free enzyme [J].
Adak, S ;
Ghosh, S ;
Abu-Soud, HM ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22313-22320
[7]  
Adams DR, 1999, PROG CH ORG NAT PROD, V76, P1
[8]  
Alderton W, 2000, PORTL PR P, V16, P22
[9]   Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay [J].
Alderton, WK ;
Boyhan, A ;
Lowe, PN .
BIOCHEMICAL JOURNAL, 1998, 332 :195-201
[10]   THE EXPRESSION AND REGULATION OF NITRIC-OXIDE SYNTHASE IN HUMAN OSTEOARTHRITIS-AFFECTED CHONDROCYTES - EVIDENCE FOR UP-REGULATED NEURONAL NITRIC-OXIDE SYNTHASE [J].
AMIN, AR ;
DICESARE, PE ;
VYAS, P ;
ATTUR, M ;
TZENG, E ;
BILLAR, TR ;
STUCHIN, SA ;
ABRAMSON, SB .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 182 (06) :2097-2102