Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition

被引:63
作者
Adak, S
Crooks, C
Wang, Q
Crane, BR
Tainer, JA
Getzoff, ED
Stuehr, DJ
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Immunol, Cleveland, OH 44195 USA
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1074/jbc.274.38.26907
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in rr-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin, Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.
引用
收藏
页码:26907 / 26911
页数:5
相关论文
共 36 条
[1]   The ferrous-dioxy complex of neuronal nitric oxide synthase - Divergent effects of L-arginine and tetrahydrobiopterin on its stability [J].
AbuSoud, HM ;
Gachhui, R ;
Raushel, FM ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (28) :17349-17353
[2]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[3]   NEURONAL NITRIC-OXIDE SYNTHASE SELF-INACTIVATES BY FORMING A FERROUS-NITROSYL COMPLEX DURING AEROBIC CATALYSIS [J].
ABUSOUD, HM ;
WANG, JL ;
ROUSSEAU, DL ;
FUKUTO, JM ;
IGNARRO, LJ ;
STUEHR, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22997-23006
[4]   Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension [J].
AbuSoud, HM ;
Rousseau, DL ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :32515-32518
[5]   Reaction of neuronal nitric-oxide synthase with oxygen at low temperature - Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin [J].
Bec, N ;
Gorren, ACF ;
Voelker, C ;
Mayer, B ;
Lange, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13502-13508
[6]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[7]   The structure of nitric oxide synthase oxygenase domain and inhibitor complexes [J].
Crane, BR ;
Arvai, AS ;
Gachhui, R ;
Wu, CQ ;
Ghosh, DK ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1997, 278 (5337) :425-431
[8]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[9]   PDZ proteins organize synaptic signaling pathways [J].
Craven, SE ;
Bredt, DS .
CELL, 1998, 93 (04) :495-498
[10]   Nitric oxide synthesis in the lung - Regulation by oxygen through a kinetic mechanism [J].
Dweik, RA ;
Laskowski, D ;
Abu-Soud, HM ;
Kaneko, FT ;
Hutte, R ;
Stuehr, DJ ;
Erzurum, SC .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (03) :660-666