Computational and experimental identification of C-elegans microRNAs

被引:217
作者
Grad, Y
Aach, J
Hayes, GD
Reinhart, BJ
Church, GM
Ruvkun, G [1 ]
Kim, J
机构
[1] Harvard Univ, Sch Med, Lipper Ctr Computat Genet, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA
关键词
D O I
10.1016/S1097-2765(03)00153-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) constitute an extensive class of noncoding RNAs that are thought to regulate the expression of target genes via complementary base-pair interactions. To date, cloning has identified over 200 miRNAs; from diverse eukaryotic organisms. Despite their success, such biochemical approaches are skewed toward identifying abundant miRNAs, unlike genome-wide, sequence-based computational predictions. We developed informatic methods to predict miRNAs in the C. elegans genome using sequence conservation and structural similarity to known miRNAs and generated 214 candidates. We confirmed the expression of four new miRNAs; by Northern blotting and used a more sensitive PCR approach to verify the expression of ten additional candidates. Based on hypotheses underlying our computational methods, we estimate that the C. elegans genome may encode between 140 and 300 miRNAs and potentially many more.
引用
收藏
页码:1253 / 1263
页数:11
相关论文
共 36 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[4]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[5]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[6]   avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans [J].
Dent, JA ;
Davis, MW ;
Avery, L .
EMBO JOURNAL, 1997, 16 (19) :5867-5879
[7]   Numerous microRNPs in neuronal cells containing novel microRNAs [J].
Dostie, J ;
Mourelatos, Z ;
Yang, M ;
Sharma, A ;
Dreyfuss, G .
RNA, 2003, 9 (02) :180-186
[8]   The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans [J].
Feinbaum, R ;
Ambros, V .
DEVELOPMENTAL BIOLOGY, 1999, 210 (01) :87-95
[9]   Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C-elegans developmental timing [J].
Grishok, A ;
Pasquinelli, AE ;
Conte, D ;
Li, N ;
Parrish, S ;
Ha, I ;
Baillie, DL ;
Fire, A ;
Ruvkun, G ;
Mello, CC .
CELL, 2001, 106 (01) :23-34
[10]   Micro-RNAs: small is plentiful [J].
Grosshans, H ;
Slack, FJ .
JOURNAL OF CELL BIOLOGY, 2002, 156 (01) :17-21