VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly

被引:144
作者
Kaya, D
Gürsoy-Özdemir, Y
Yemisci, M
Tuncer, N
Aktan, S
Dalkara, T [1 ]
机构
[1] Hacettepe Univ, Fac Med, Inst Neurol Sci & Psychiat, Dept Neurol, TR-06100 Ankara, Turkey
[2] Marmara Univ, Fac Med, Dept Neurol, Istanbul, Turkey
关键词
focal cerebral ischemia; neuronal apoptosis; neuroprotection; VEGF (vascular endothelial growth factor);
D O I
10.1038/sj.jcbfm.9600109
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Delayed administration of vascular endothelial growth factor (VEGF) promotes functional recovery after focal cerebral ischemia. However, early intravenous injection of VEGF increases blood-brain barrier (BBB) leakage, hemorrhagic transformation and infarct volume whereas its application to cortical surface is neuroprotective. We have investigated whether or not early intracerebroventricular administration of VEGF could replicate the neuroprotective effect observed with topical application and the mechanism of action of this protection. Mice were subjected to 90 mins middle cerebral artery (MCA) occlusion and 24h of reperfusion. Vascular endothelial growth factor (8ng, intracerebroventricular) was administered 1 or 3h after reperfusion. Compared with the vehicle-treated (intracerebroventricular) group, VEGF decreased the infarct volume along with BBB leakage in both treatment groups. Neurologic disability scores improved in parallel to the changes in infarct volume. Independently of the decrease in infarct size, VEGF also reduced the number of TUNEL-positive apoptotic neurons. Phospo-Akt levels were significantly higher in ischemic hemispheres of the VEGF-treated mice. Contrary to intracerebroventricular route, intravenous administration of VEGF (15 mu g/kg) enhanced the infarct volume as previously reported for the rat. In conclusion, single intracerebroventricular injection of VEGF protects brain against ischemia without adversely affecting 131313 permeability, and has a relatively long therapeutic time window. This early neuroprotective action, observed well before recovery-promoting actions such as angiogenesis, possibly involves activation of the PI-3-Akt pathway.
引用
收藏
页码:1111 / 1118
页数:8
相关论文
共 50 条
[1]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[2]   DIFFERENTIAL EXPRESSION OF THE 2 VEGF RECEPTORS FLT AND KDR IN PLACENTA AND VASCULAR ENDOTHELIAL-CELLS [J].
BARLEON, B ;
HAUSER, S ;
SCHOLLMANN, C ;
WEINDEL, K ;
MARME, D ;
YAYON, A ;
WEICH, HA .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 54 (01) :56-66
[3]   VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat [J].
Bartholdi, D ;
Rubin, BP ;
Schwab, ME .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1997, 9 (12) :2549-2560
[4]   BRAIN-DERIVED NEUROTROPHIC FACTOR PROTECTS AGAINST ISCHEMIC CELL-DAMAGE IN RAT HIPPOCAMPUS [J].
BECK, T ;
LINDHOLM, D ;
CASTREN, E ;
WREE, A .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1994, 14 (04) :689-692
[5]   Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain [J].
Bernaudin, M ;
Nedelec, AS ;
Divoux, D ;
MacKenzie, ET ;
Petit, E ;
Schumann-Bard, P .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (04) :393-403
[6]   INDIRECT ANGIOGENIC CYTOKINES UP-REGULATE VEGF AND BFGF GENE-EXPRESSION IN VASCULAR SMOOTH-MUSCLE CELLS, WHEREAS HYPOXIA UP-REGULATES VEGF EXPRESSION ONLY [J].
BROGI, E ;
WU, TG ;
NAMIKI, A ;
ISNER, JM .
CIRCULATION, 1994, 90 (02) :649-652
[7]   Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion [J].
Chan, KM ;
Lam, DTN ;
Pong, K ;
Widmer, HR ;
Hefti, F .
NEUROCHEMICAL RESEARCH, 1996, 21 (07) :763-767
[8]   Neurotrophins and their receptors: A convergence point for many signalling pathways [J].
Chao, MV .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (04) :299-309
[9]   Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat [J].
Cobbs, CS ;
Chen, J ;
Greenberg, DA ;
Graham, SH .
NEUROSCIENCE LETTERS, 1998, 249 (2-3) :79-82
[10]   TUMOR VASCULAR-PERMEABILITY FACTOR STIMULATES ENDOTHELIAL-CELL GROWTH AND ANGIOGENESIS [J].
CONNOLLY, DT ;
HEUVELMAN, DM ;
NELSON, R ;
OLANDER, JV ;
EPPLEY, BL ;
DELFINO, JJ ;
SIEGEL, NR ;
LEIMGRUBER, RM ;
FEDER, J .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 84 (05) :1470-1478