Tunneling-based SRAM

被引:98
作者
Van der Wagt, JPA [1 ]
机构
[1] Raytheon TI Syst, Dallas, TX 75265 USA
关键词
bistable circuits; DRAM; hysteresis nonlinearity; integrated circuit interconnections; memories; multivalued logic circuits; random access memories; resonant tunneling devices; scaling; SPICE; SRAM; tunnel devices/effects;
D O I
10.1109/5.752516
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a new high-density low-power circuit approach for implementing static random access memory (SRAM) using low current density resonant tunneling diodes (RTD's). After an over-view of semiconductor random access memory architecture and technology, the concept of tunneling-based SRAM (TSRAM) is introduced. Experimental results for a compound semiconductor 1-bit 50-nW TSRAM gain cell using low current density (similar to 1 A/cm(2)) RTD's and low-leakage heterostructure field effect transistors al-e presented. We describe a one-transistor TSRAM cell which could convert silicon dynamic RAM (DRAM) to ultradense SRAM if an ultralow current density (similar to 1 mu A/cm(2)) silicon bistable device is developed. Finally, we present experimental and simulation results Sol a TSRAM cell using multipeaked I-V curve devices and a multivalued word line. This approach aims at increasing stola,ae density through vertical integration of bistable devices such as RTD's.
引用
收藏
页码:571 / 595
页数:25
相关论文
共 185 条
[21]   OSCILLATIONS UP TO 712 GHZ IN INAS/ALSB RESONANT-TUNNELING DIODES [J].
BROWN, ER ;
SODERSTROM, JR ;
PARKER, CD ;
MAHONEY, LJ ;
MOLVAR, KM ;
MCGILL, TC .
APPLIED PHYSICS LETTERS, 1991, 58 (20) :2291-2293
[22]   Overview of complementary GaAs technology for high-speed VLSI circuits [J].
Brown, RB ;
Bernhardt, B ;
LaMacchia, M ;
Abrokwah, J ;
Parakh, PN ;
Basso, TD ;
Gold, SM ;
Stetson, S ;
Gauthier, CR ;
Foster, D ;
Crawforth, B ;
McQuire, T ;
Sakallah, K ;
Lomax, RJ ;
Mudge, TN .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1998, 6 (01) :47-51
[23]  
Brown W. D., 1998, Nonvolatile Semiconductor Memory Technology
[24]  
BURSKY D, 1997, ELECT DESIGN 1117, P73
[25]   DESIGN AND ANALYSIS OF A LOW-POWER HEMT SRAM CELL [J].
BUSHEHRI, E ;
BRATOV, V ;
THIEDE, A ;
STAROSELSKY, V ;
CLARK, D .
ELECTRONICS LETTERS, 1995, 31 (21) :1828-1829
[26]   RESONANT TUNNELING DEVICES WITH MULTIPLE NEGATIVE DIFFERENTIAL RESISTANCE AND DEMONSTRATION OF A 3-STATE MEMORY CELL FOR MULTIPLE-VALUED LOGIC APPLICATIONS [J].
CAPASSO, F ;
SEN, S ;
CHO, AY ;
SIVCO, D .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (07) :297-299
[27]   LOW-POWER CMOS DIGITAL DESIGN [J].
CHANDRAKASAN, AP ;
SHENG, S ;
BRODERSEN, RW .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1992, 27 (04) :473-484
[28]   ANALYSIS OF HETEROJUNCTION BIPOLAR-TRANSISTOR RESONANT TUNNELING DIODE LOGIC FOR LOW-POWER AND HIGH-SPEED DIGITAL APPLICATIONS [J].
CHANG, CE ;
ASBECK, PM ;
WANG, KC ;
BROWN, ER .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (04) :685-691
[29]   GAAS HBTS FOR HIGH-SPEED DIGITAL INTEGRATED-CIRCUIT APPLICATIONS [J].
CHANG, CTM ;
YUAN, HT .
PROCEEDINGS OF THE IEEE, 1993, 81 (12) :1727-1743
[30]   RESONANT TUNNELING IN SEMICONDUCTOR DOUBLE BARRIERS [J].
CHANG, LL ;
ESAKI, L ;
TSU, R .
APPLIED PHYSICS LETTERS, 1974, 24 (12) :593-595