This paper investigates a constrained form of the classical Weber problem. Specifically, we consider the problem of locating a new facility in the presence of convex polygonal forbidden regions such that the sum of the weighted distances from the new facility to n existing facilities is minimized. It is assumed that a forbidden region is an area in the plane where travel and facility location are not permitted and that distance is measured using the Euclidean-distance metric. A solution procedure for this nonconvex programming problem is presented. It is shown that by iteratively solving a series of unconstrained problems, this procedure terminates at a local optimum to the original constrained problem. Numerical examples are presented.