Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms

被引:474
作者
Mikkelsen, RB
Wardman, P
机构
[1] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA
[2] Mt Vernon Hosp, Gray Canc Inst, Northwood HA6 2JR, Middx, England
关键词
reactive oxygen; reactive nitrogen; nitric oxide radiation; signal transduction; redox;
D O I
10.1038/sj.onc.1206663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO.) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO. levels.
引用
收藏
页码:5734 / 5754
页数:21
相关论文
共 234 条
[11]   Mechanisms for redox control of gene expression [J].
Bauer, CE ;
Elsen, S ;
Bird, TH .
ANNUAL REVIEW OF MICROBIOLOGY, 1999, 53 :495-523
[12]  
BECIKMAN JS, 1996, AM J PHYSIOL, V271, pC1424
[13]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[14]   Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells - Evaluation of the role of the nitric oxide signaling pathway and potential defects in hypertension [J].
Begum, N ;
Ragolia, L ;
Rienzie, J ;
McCarthy, M ;
Duddy, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :25164-25170
[15]   Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations [J].
Bellamy, TC ;
Griffiths, C ;
Garthwaite, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (35) :31801-31807
[16]   The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal [J].
Bernardi, P ;
Petronilli, V .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1996, 28 (02) :131-138
[17]   REACTIVITY OF HO2/O-2 RADICALS IN AQUEOUS-SOLUTION [J].
BIELSKI, BHJ ;
CABELLI, DE ;
ARUDI, RL ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1985, 14 (04) :1041-1100
[18]   S-Nitrosylation of proteins [J].
Broillet, MC .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (8-9) :1036-1042
[19]   Mitochondria: Regulators of signal transduction by reactive oxygen and nitrogen species [J].
Brookes, PS ;
Levonen, AL ;
Shiva, S ;
Sarti, P ;
Darley-Usmar, VM .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 (06) :755-764
[20]   Nitric oxide activation of p38 mitogen-activated protein kinase in 293T fibroblasts requires cGMP-dependent protein kinase [J].
Browning, DD ;
McShane, MP ;
Marty, C ;
Ye, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (04) :2811-2816