SOX2 functions to maintain neural progenitor identity

被引:1073
作者
Graham, V
Khudyakov, J
Ellis, P
Pevny, L [1 ]
机构
[1] Univ N Carolina, Dept Genet, Ctr Neurosci, Chapel Hill, NC 27599 USA
[2] Univ Sheffield, Dev Genet Ctr, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1016/S0896-6273(03)00497-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.
引用
收藏
页码:749 / 765
页数:17
相关论文
共 75 条
[1]   The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6 [J].
Akiyama, H ;
Chaboissier, MC ;
Martin, JF ;
Schedl, A ;
de Crombrugghe, B .
GENES & DEVELOPMENT, 2002, 16 (21) :2813-2828
[2]  
ALTMAN J, 1984, DEV RAT SPINAL CORD
[3]   A unified hypothesis on the lineage of neural stem cells [J].
Alvarez-Buylla, A ;
García-Verdugo, JM ;
Tramontin, AD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :287-293
[4]   Stem cells and pattern formation in the nervous system: The possible versus the actual [J].
Anderson, DJ .
NEURON, 2001, 30 (01) :19-35
[5]   Multipotent cell lineages in early mouse development depend on SOX2 function [J].
Avilion, AA ;
Nicolis, SK ;
Pevny, LH ;
Perez, L ;
Vivian, N ;
Lovell-Badge, R .
GENES & DEVELOPMENT, 2003, 17 (01) :126-140
[6]   A new role for glia: Generation of neurons! [J].
Barres, BA .
CELL, 1999, 97 (06) :667-670
[7]   X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation [J].
Bellefroid, EJ ;
Bourguignon, C ;
Hollemann, T ;
Ma, QF ;
Anderson, DJ ;
Kintner, C ;
Pieler, T .
CELL, 1996, 87 (07) :1191-1202
[8]   Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators [J].
Bowles, J ;
Schepers, G ;
Koopman, P .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :239-255
[9]   Specification of neuronal fates in the ventral neural tube [J].
Briscoe, J ;
Ericson, J .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (01) :43-49
[10]   A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube [J].
Briscoe, J ;
Pierani, A ;
Jessell, TM ;
Ericson, J .
CELL, 2000, 101 (04) :435-445