Role of a nonnative interaction in the folding of the protein G B1 domain as inferred from the conformational analysis of the alpha-helix fragment

被引:40
作者
Blanco, FJ
Ortiz, AR
Serrano, L
机构
[1] EMBL, Meyerhofstrasse 1
[2] Department of Molecular Biology, Scripps Research Institute, San Diego
来源
FOLDING & DESIGN | 1997年 / 2卷 / 02期
关键词
alpha-helix; hydrophobic staple motif; peptide conformation; protein G; Schellman motif;
D O I
10.1016/S1359-0278(97)00017-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The role of local interactions in protein folding and stability can be investigated by the conformational analysis of protein fragments. The hydrophobic staple and Schellman motifs have been described at the N and C terminus, respectively, of protein alpha-helices. These motifs are characterized by an interaction between two hydrophobic residues, one outside the helix and one within the helix, and their importance for helix stability has been analyzed in model peptides. In the alpha-helix of the protein G B1 domain, only the Schellman motif is formed - the hydrophobic staple motif is absent despite the favourable sequence pattern. We have experimentally analyzed the solution conformation of the 19-41 fragment of protein G. This peptide comprises the helical residues and contains both the hydrophobic staple and Schellman motif sequences. Results: In the isolated peptide in water, the hydrophobic staple motif is formed and stabilizes the helical structure as compared with a shorter peptide lacking it, but the Schellman motif is not formed. In 30% aqueous TFE, the helix is more stable than in pure water and both motifs are formed. Conclusions: The results suggest that the importance of each motif for the folding and stability of protein G is different. The nonnative hydrophobic staple interaction can help to nucleate the helix at the beginning of folding but has later to be disrupted. The Schellman motif, while not providing enough energy for substantial helix stabilization in the unfolded state, could be important for determining the local fold of the sequence in the context of the rest of the protein.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 73 条
[1]   IMPACT OF LOCAL AND NONLOCAL INTERACTIONS ON THERMODYNAMICS AND KINETICS OF PROTEIN-FOLDING [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 252 (04) :460-471
[2]  
Adler A J, 1973, Methods Enzymol, V27, P675
[3]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[4]   2-DIMENSIONAL SPECTROSCOPY - APPLICATION TO NUCLEAR MAGNETIC-RESONANCE [J].
AUE, WP ;
BARTHOLDI, E ;
ERNST, RR .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (05) :2229-2246
[5]   RULES FOR ALPHA-HELIX TERMINATION BY GLYCINE [J].
AURORA, R ;
SRINIVASAN, R ;
ROSE, GD .
SCIENCE, 1994, 264 (5162) :1126-1130
[6]   SEEDING PROTEIN FOLDING [J].
BALDWIN, RL .
TRENDS IN BIOCHEMICAL SCIENCES, 1986, 11 (01) :6-9
[7]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]  
*BIOS TECHN, 1995, INSIGHTII VERS 95 0
[10]   A SHORT LINEAR PEPTIDE THAT FOLDS INTO A NATIVE STABLE BETA-HAIRPIN IN AQUEOUS-SOLUTION [J].
BLANCO, FJ ;
RIVAS, G ;
SERRANO, L .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (09) :584-590