Optimal design of pulsed arterial spin labeling MRI experiments

被引:35
作者
Xie, Jingyi [1 ]
Gallichan, Daniel [1 ]
Gunn, Roger N. [2 ]
Jezzard, Peter [1 ]
机构
[1] Univ Oxford, Dept Clin Neurol, FMRIB Ctr, Oxford, England
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
基金
英国医学研究理事会;
关键词
arterial spin labeling; optimal design; optimal sampling schedule; perfusion; PASL; CBF;
D O I
10.1002/mrm.21549
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Quantitative measurement of cerebral blood flow (CBF) using arterial spin labeling (ASL) MRI requires the acquisition of multiple inversion times (TIs) and the application of an appropriate kinetic model. The choice of these sampling times will have an impact on the precision of the estimated parameters. Here, optimal sampling schedule (OSS) design techniques, based on the Fisher Information approach, are applied in order to derive an optimal sampling scheme for pulsed arterial spin labeling (PASL) experiments. Such an approach should improve the precision of parameter estimation from experimental data, and provide a formal framework for optimally selecting a limited number of samples. In this study, we aimed to optimize the estimation precision of CBF and bolus arrival time from the PASL data. The performance of OSS was compared to a more standard evenly distributed sampling schedule (EDS) using both simulated and measured experimental data sets. It was found that OSS was able to significantly improve the precision of parameter estimation in PASL studies that sought to estimate either both CBF and bolus arrival time, or CBF alone.
引用
收藏
页码:826 / 834
页数:9
相关论文
共 31 条
[1]   Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow [J].
Alsop, DC ;
Detre, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (06) :1236-1249
[2]  
Alsop DC, 2000, ANN NEUROL, V47, P93, DOI 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.3.CO
[3]  
2-#
[4]  
Bard Y., 1974, Nonlinear Parameter Estimation
[5]   Optimization of diffusion measurements using Cramer-Rao lower bound theory and its application to articular cartilage [J].
Brihuega-Moreno, O ;
Heese, FP ;
Hall, LD .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1069-1076
[6]  
Buxton R.B., 2002, Introduction to functional magnetic resonance imaging: principles and techniques, DOI DOI 10.1117/1.JBO.21.3.036008
[7]   A general kinetic model for quantitative perfusion imaging with arterial spin labeling [J].
Buxton, RB ;
Frank, LR ;
Wong, EC ;
Siewert, B ;
Warach, S ;
Edelman, RR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 40 (03) :383-396
[8]   Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI [J].
Cercignani, Mara ;
Alexander, Daniel C. .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (04) :803-810
[9]   Rapid T1 mapping using multislice echo planar imaging [J].
Clare, S ;
Jezzard, P .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (04) :630-634
[10]   OPTIMAL-DESIGN OF MULTIOUTPUT SAMPLING SCHEDULES - SOFTWARE AND APPLICATIONS TO ENDOCRINE METABOLIC AND PHARMACOKINETIC MODELS [J].
COBELLI, C ;
RUGGERI, A ;
DISTEFANO, JJ ;
LANDAW, EM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (04) :249-256