Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI

被引:73
作者
Cercignani, Mara
Alexander, Daniel C.
机构
[1] Inst Neurol, Dept Neuroinflammat, NMR Res Unit, London WC1N 3BG, England
[2] UCL, Dept Comp Sci, Ctr Med Image Comp, London, England
关键词
magnetization transfer; Cramer-Rao lower bound; optimal sampling; quantitative MRI; brain;
D O I
10.1002/mrm.21003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper uses the theory of Cramer-Rao lower bounds [CRLB) to obtain optimal acquisition schemes for in vivo quantitative magnetization transfer (MT) imaging, although the method is generally applicable to any multiparametric MRI technique. Quantitative MT fits a two-pool model to data collected at different sampling points or settings of amplitude and offset frequency in the MT saturation pulses. Here we use simple objective functions based on the CRLB to optimize sampling strategies for multiple parameters simultaneously, and use simulated annealing to minimize these objective functions with respect to the sampling configuration. Experiments compare optimal schemes derived for quantitative MT in the human white matter (WM) at 1.5T with previously published schemes using both synthetic and human-brain data. Results show large reductions in error of the fitted parameters with the new schemes, which greatly increases the clinical potential of in vivo quantitative MT. Since the sampling-scheme optimization requires specific settings of the MT parameters, we also show that the optimum schemes are robust to these settings within the range of MT parameters observed in the brain.
引用
收藏
页码:803 / 810
页数:8
相关论文
共 36 条
[1]   Optimal imaging parameters for fiber-orientation estimation in diffusion MRI [J].
Alexander, DC ;
Barker, GJ .
NEUROIMAGE, 2005, 27 (02) :357-367
[2]  
[Anonymous], NUMERICAL RECIPES C
[3]  
Atkison AC, 1992, OPTIMUM EXPT DESIGNS
[4]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[5]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[6]   Optimization of diffusion measurements using Cramer-Rao lower bound theory and its application to articular cartilage [J].
Brihuega-Moreno, O ;
Heese, FP ;
Hall, LD .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1069-1076
[7]   Three-dimensional quantitative magnetisation transfer imaging of the human brain [J].
Cercignani, M ;
Symms, MR ;
Schmierer, K ;
Boulby, PA ;
Tozer, DJ ;
Ron, M ;
Tofts, PS ;
Barker, GJ .
NEUROIMAGE, 2005, 27 (02) :436-441
[8]   A COMPARISON OF ONE-SHOT AND RECOVERY METHODS IN T1-IMAGING [J].
CRAWLEY, AP ;
HENKELMAN, RM .
MAGNETIC RESONANCE IN MEDICINE, 1988, 7 (01) :23-34
[9]   New robust 3-D phase unwrapping algorithms: Application to magnetic field mapping and undistorting echoplanar images [J].
Cusack, R ;
Papadakis, N .
NEUROIMAGE, 2002, 16 (03) :754-764
[10]   Estimation of the macromolecular proton fraction and bound pool T2 in multiple sclerosis [J].
Davies, GR ;
Tozer, DJ ;
Cercignani, M ;
Ramani, A ;
Dalton, CM ;
Thompson, AJ ;
Barker, GJ ;
Tofts, PS ;
Miller, DH .
MULTIPLE SCLEROSIS JOURNAL, 2004, 10 (06) :607-613